

Administrative Issues (9/21, Wednesday)

- Homework\#1 due today
- Homework\#2 assigned today
- Please download the problems from the course website:
https://xingteaching.sites.umassd.edu/
- Due Sept. 28, Wednesday
- Project Proposal
- Due Oct. 5, Wednesday
- Refer to Proposal Guideline on the course website

Review of Lecture \#4

- Basic concepts:
- Code, code word, binary code, error detecting /correcting code, encoding / decoding process
- Error models for code development: bit / symmetric / asymmetric / unidirectional /byte errors
- Hamming distance, code distance, error detection/correction capabilities (3 theorems)
- Parity codes
- Single-bit and multiple-bit parity codes
- Hamming single error correcting (SEC) codes
- Calculate number of check bits
- Arrange bit positions
- Generate the check bits
- Correct the erroneous bit according to the syndrome word
- Horizontal and Vertical parity code: can correct any single-bit errors in groups of data words

m-of-n Codes

- Each code word has exactly m 1s out of a total of n bits.
- each code word has a weight of m.
- $\mathrm{CD}=$? 2
- The m-of-n code can detect all single-bit errors and all multiple, unidirectional errors
- Any single-bit error forces the resulting erroneous word to have either $(\mathrm{m}+1)$ or $(\mathrm{m}-1)$ ones.
- Unidirectional: errors are either a change of a 1 to a 0 or a change of a 0 to a 1

Separable m-of-n Codes

- It is possible to construct separable m-of-n codes as:

Example k-of-2k Code

3-of-6 code	
000	111
001	110
010	101
011	100
100	011
101	010
110	001
111	000
Original Information	Appended Check Bits

- Disadvantage: 100% redundancy
- Advantage: separable code \rightarrow both encoding and decoding processes are simple

Dr. Xing

Property of m-of-2m Code

- Suppose we have two code words A and B
$A=\left(a_{m-1}, \ldots, a_{0}, \overline{a_{m-1}}, \ldots, \overline{a_{0}}\right) \quad B=\left(b_{m-1}, \ldots, b_{0}, \overline{b_{m-1}}, \ldots, \overline{b_{0}}\right)$

$$
A+B=\left(a_{\mathrm{m}-1}+\mathrm{b}_{\mathrm{m}-1}, \cdots, \mathrm{a}_{0}+\mathrm{b}_{0}, \overline{\mathrm{a}_{\mathrm{m}-1}}+\overline{\mathrm{b}_{\mathrm{m}-1}}, \ldots, \overline{\left.\mathrm{a}_{0}+\overline{\mathrm{b}_{0}}\right)}\right.
$$

- In modulo-2 addition

$$
\bar{x}+\bar{y}=x+y
$$

$\mathrm{A}+\mathrm{B}=\left(\mathrm{a}_{\mathrm{m}-1}+\mathrm{b}_{\mathrm{m}-1}, \ldots, \mathrm{a}_{0}+\mathrm{b}_{0}:{ }_{\mathrm{m}-1}+\mathrm{b}_{\mathrm{m}-1}, \ldots, \mathrm{a}_{0}+\mathrm{b}_{0}\right)$
data portion

- The modulo-2 addition of two m-of-2m code words generates a code word where the check portion is the exact replica of the functional portion.

Non-separable m-of-n Code

- The encoding and decoding can be performed by look-up tables
- Can detect any single-bit errors

Non-separable 2-of-5 code for BCD data		
Dec. digit	BCD data	2-of-5 code
0	0000	00011
1	0001	11000
2	0010	10100
3	0011	01100
4	0100	10010
5	0101	01010
6	0110	00110
7	0111	10001
8	1000	01001
9	1001	00101

Have the same error detection capabilities as the single-bit parity code

Dr. Xing

Agenda

\checkmark Basic concepts

- Example codes
$\sqrt{ }$ Parity codes: Hamming SEC code, Horizontal and Vertical Parity code
$\sqrt{ }$ m-of-n
- Berger
- Checksums
- Cyclic
- Arithmetic
- Code selection issue

Berger Codes

- A separable code formed by appending

Example

a check symbol which is simply the

- Berger code words for 4-bit information words count of the number of $0 \mathrm{~s}\left(N_{0}\right)$ in the original information.

- The check bits $\mathrm{b}_{\mathrm{r}-1}, \ldots, \mathrm{~b}_{1}, \mathrm{~b}_{0}$ are the

Original Information
100011

0101010	
0110	010

 0110010
 0111001
 1000011
 \begin{tabular}{l|l|l}
 1000 \& 011

10010
\end{tabular}

1001	010
1010	010
1011	001

 10110001
 110010
01010
1011
1100
10010
0010
1101001
1110001
1111000

Characteristics of Berger Codes

- Berger codes detect all unidirectional errors in the information bits
since any number of 0 to 1 errors will decrease the number of 0 s in the information, and any number of 1 to 0 errors will increase the number of 0 s in the information
- Berger codes detect all unidirectional errors in the check bits
since any number of 1 to 0 errors will decrease the check value, and any number of 0 to 1 errors will increase the check value

Characteristics of Berger Codes (Cont'd)

- If 1 to 0 errors occur in both the information and the check symbol, the number of 0 s in the information will increase while the check value will decrease
- If 0 to 1 errors occur in both the information and the check symbol, the number of 0s (zeros) in the information will decrease while the check value will increase

Berger Codes:
 How many check bits?

- For k information bits, the number of check bits N_{c} in the Berger code is given by

$$
N_{C}=\left\lceil\log _{2}(k+1)\right\rceil
$$

\# of information bits	\# of check bits	Percentage redundancy
4	3	75%
8	4	50%
16	5	31.25%
32	6	18.75%
64	7	10.94%

- The redundancy is high when the number of information bits is small
- As number of information bits increases, the efficiency improves substantially

Invariant of Berger Codes

- It is possible to manipulate Berger code words such that they are invariant to the following operations
- Arithmetic operations: addition, subtraction, multiplication and division
- Logical operations: AND, OR, XOR, NOT, ROTATE, and SHIFT

Addition Example

- Suppose we want to ADD two $n+1$-bit binary numbers and a carry-in bit $\mathrm{c}_{\text {in }}$

$$
X=\left(x_{n}, x_{n-1}, \ldots, x_{1}, x_{0}\right) \quad Y=\left(y_{n}, y_{n-1}, \ldots, y_{1}, y_{0}\right)
$$

- Let the Berger check symbol of X be Xc, of Y be Yc, of the sum S be Sc and the check symbol of the internal carries C as Cc, thus:

$$
\mathrm{S}_{\mathrm{c}}=\mathrm{X}_{\mathrm{c}}+\mathrm{Y}_{\mathrm{c}}-\mathrm{C}_{\mathrm{c}}-\mathrm{c}_{\text {in }}+\mathrm{c}_{\text {out }}
$$

- Example:

$$
\begin{gathered}
X=(10110011) \quad Y=(11001011) \quad c_{\text {in }}=1 \\
X_{c}=3 \quad Y_{c}=3 \\
S=(01111111) \quad c_{\text {out }}=1 \quad C=(10000011)
\end{gathered}
$$

Note that the most significant bit of C is $\mathrm{c}_{\text {out }}$
$\mathrm{S}_{\mathrm{c}}=\mathrm{X}_{\mathrm{c}}+\mathrm{Y}_{\mathrm{c}}-\mathrm{c}_{\mathrm{in}}-\mathrm{C}_{\mathrm{c}}+\mathrm{c}_{\mathrm{out}}=3+3-1-5+1=1$
Dr. Xing

AND Example

- Suppose we want to AND two $n+1$-bit binary numbers

$$
\begin{aligned}
& \mathrm{X}=\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}, \ldots, \mathrm{x}_{1}, \mathrm{x}_{0}\right) \\
& \mathrm{Y}=\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}, \ldots, \mathrm{y}_{1}, \mathrm{y}_{0}\right)
\end{aligned}
$$

- Let the Berger check symbol of X be Xc, of Y be $Y c$, and check symbol of X AND Y be $(\mathrm{X} \wedge \mathrm{Y})_{c}$, thus:

$$
(X \wedge Y)_{c}=X_{c}+Y_{c}-(X \vee Y){ }_{c}
$$

- Example:

$$
\begin{gathered}
\mathrm{X}=(10110011) \quad \mathrm{Y}=(11001011) \\
\mathrm{X}_{\mathrm{c}}=3 \quad \mathrm{Y}_{\mathrm{c}}=3 \\
\mathrm{X} \wedge \mathrm{Y}=(10000011) \quad \mathrm{X} \vee \mathrm{Y}=(11111011) \\
(\mathrm{X} \wedge \mathrm{Y})=\mathrm{X}_{\mathrm{c}}+\mathrm{Y}_{\mathrm{c}}-(\mathrm{X} \vee \mathrm{Y})_{\mathrm{c}}=3+3-1=5
\end{gathered}
$$

Dr. Xing

Error Detection Using Berger Codes

- Berger code processor

Dr. Xing
Lecture \#5

Agenda

\checkmark Basic concepts

- Example codes
$\sqrt{ }$ Parity codes: Hamming SEC code, Horizontal and Vertical Parity code
$\sqrt{ }$ m-of-n
\checkmark Berger
- Checksums
- Cyclic
- Arithmetic
- Code selection issue

Checksum Codes

- A form of separable codes
- Checksum is a quantity of information added to the block of data to help detect errors

Dr. Xing

The Checksum

- Basically the sum of original data
- Difference between various forms of checksum is the way in which the summation is generated
- Single-precision
- Double-precision
- Honeywell
- Residue

All checksums can detect errors but not locate them!

Single-Precision Checksum (SPC)

- Formed by performing binary addition of the data to be protected by the checksum and ignoring any overflow that occurs;
- An overflow occurs if the binary sum of the n-bit data exceeds 2^{n}-1
- Formed by adding the n-bit data in a modulo-2 2^{n} style
- Example:

| | $\left.\begin{array}{lllll}0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ & 0 & 1 & 1 & 0 \\ \text { (addition) }+ & 1 & 0 & 0 & 0\end{array}\right\}$ |
| :--- | :--- | :--- | :--- | :--- |
| (carry ignored) 1 0 1 1 | 0 |
| Original | |
| Data | |

- Difficulty: information, thus the ability to detect errors can be lost in the ignored overflow \rightarrow an example (extra notes on board)

Dr. Xing

Double-Precision Checksum

 (DPC)- Compute the checksum in double precision
- Compute a $2 n$-bit checksum for a block of n-bit words using modulo- $2^{2 n}$ arithmetic
- Can overcome the difficulty of SPC
- An example (extra notes)

Honeywell Checksum

- Concatenate consecutive words to form a collection of double length words
- Assume there are $n k$-bit words, a set of $n / 2$ $2 k$-bit words is formed, and a checksum is formed over the newly double-length words $\rightarrow \mathrm{a}$ bit error appearing in the same bit positions of all words will affect at least two bit positions of the checksum!

- An example (extra notes)

Residue Checksum

- Same basic concept as in SPC except that the carry bit out of the MSB position is not ignored but is added back to the checksum in an end-around carry fashion

- An example (extra notes)

Dr. Xing

Agenda

\checkmark Basic concepts

- Example codes
$\sqrt{ }$ Parity codes: Hamming SEC code, Horizontal and Vertical Parity code
$\sqrt{ }$ m-of-n
$\sqrt{ }$ Berger
$\sqrt{ }$ Checksums
- Cyclic
- Arithmetic
- Code selection issue

Cyclic Codes (1)

- Every cyclic/end-around shift of a code word is also a code word
- Often used in sequential devices (disks, tapes)
- Cyclic codes are best represented and analyzed through the use of polynomial algebra
- Each bit of the code word v can be represented as a coefficient of the polynomial $V(X)$

$$
\begin{gathered}
v=\left(v_{0}, v_{1}, \ldots, v_{\mathrm{n}-1}\right) \\
V(X)=v_{0}+v_{1} X+v_{2} X^{2}+\ldots+v_{n-1} X^{n-1}
\end{gathered}
$$

Cyclic Codes (2)

- Generator Polynomial - The set of code words for an (n, k) cyclic code is uniquely generated by its generator polynomial $G(X)$
- Example: nonseparable cyclic code

$$
\begin{gathered}
\text { Code Polynomial }=V(X)=D(X) G(X) \\
D(X)=\text { Data Polynomial }=d_{k-1} X^{k-1}+\ldots+d_{1} X+d_{0} \\
V(X)=\text { Code Polynomial }=v_{n-1} X+\ldots+v_{1} X+v_{0} \\
n=\text { Number of bits in the code word } \\
k=\text { Number of bits in the original data word } \\
G(X)=g_{n-k} X^{n-k}+g_{n-k-1} X^{n-k-1}+\ldots+g_{2} X^{2}+g_{1} X+g_{0} \\
\text { Modulo-2 operation! }
\end{gathered}
$$

$$
\begin{array}{cc}
\frac{G(X)}{1+X+X^{3}} & (n, k) \\
1+X+X^{2}+X^{3}+X^{11}+X^{12} & (12+K, K) \\
1+X^{2}+X^{13}+X^{16} & (16+K, K) \\
1+X^{5}+X^{12}+X^{16} & (16+K, K)
\end{array}
$$

Dr. Xing

Cyclic Codes (3)

- The generator polynomial $\mathrm{G}(\mathrm{X})$ has the following properties
- The degree of $G(X)$ is $n-k$
- Each code word $V(X)$ is a multiple of $G(X)$ and is computed as $\mathrm{V}(\mathrm{X})=\mathrm{D}(\mathrm{X}) \mathrm{G}(\mathrm{X})$
$-G(X)$ must be a factor of $X^{n}-1$
- The (n, k) cyclic codes can detect all singlebit errors and all multiple, adjacent errors affecting fewer than ($\mathrm{n}-\mathrm{k}$) bits
- Communication applications with burst errors
- A burst error is the result of a transient fault and usually introduces a number of adjacent errors into a given data item
- (n, k) cyclic codes can detect adjacent errors as long as number of adjacent bits affected $<=(\mathrm{n}-\mathrm{k})$
- Non-separable and separable

Non-separable Cyclic Codes

- Encoding process: simply multiplying the data polynomial $\mathrm{D}(\mathrm{X})$ by the generator polynomial G(X)
- Implementation using combinatorial circuits
- For binary codes the coefficients of each polynomial (generator, data, and code) are either 0 (zero) or 1 (one)
- Consequently, the coefficients of the code polynomial are simply summations of the appropriate data bits
- The summations are modulo 2
summations which are equivalent to EXCLUSIVE-OR gates

Non-separable Cyclic Coding Using Combinatorial Circuits

- The encoding process for a particular generator polynomial can be performed using a combinational circuit containing only EXCLUSIVE-OR gates

Example: $(7,4)$ Cyclic Code

- The generator polynomial is $G(X)=1+X+X^{3}$
 $\mathrm{g}_{0}=1, \quad \mathrm{~g}_{1}=1, \quad \mathrm{~g}_{2}=0, \quad \mathrm{~g}_{3}=1$
- Also, assume that the data polynomial is given by

$$
\mathrm{D}(\mathrm{X})=\mathrm{d}_{0}+\mathrm{d}_{1} \mathrm{X}+\mathrm{d}_{2} \mathrm{X}^{2}+\mathrm{d}_{3} \mathrm{X}^{3}
$$

- The resulting code polynomial is given by

$$
\begin{aligned}
\mathrm{V}(\mathrm{X})= & \mathrm{d}_{0}+\left(\mathrm{d}_{0}+\mathrm{d}_{1}\right) \mathrm{X}+\left(\mathrm{d}_{1}+\mathrm{d}_{2}\right) \mathrm{X}^{2}+\left(\mathrm{d}_{0}+\mathrm{d}_{2}+\mathrm{d}_{3}\right) \mathrm{X}^{3}+ \\
& \left(\mathrm{d}_{1}+\mathrm{d}_{3}\right) \mathrm{X}^{4}+\mathrm{d}_{2} \mathrm{X}^{5}+\mathrm{d}_{3} \mathrm{X}^{6}
\end{aligned}
$$

- The code word is given by

$$
v=\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right)
$$

$\mathrm{v}=\left(\mathrm{d}_{0},\left(\mathrm{~d}_{0}+\mathrm{d}_{1}\right),\left(\mathrm{d}_{1}+\mathrm{d}_{2}\right),\left(\mathrm{d}_{0}+\mathrm{d}_{2}+\mathrm{d}_{3}\right),\left(\mathrm{d}_{1}+\mathrm{d}_{3}\right), \mathrm{d}_{2}, \mathrm{~d}_{3}\right)$

Dr. Xing

Combinatorial Circuits for the Example

- Combinatorial circuit composed of modulo2 adders (exclusive-OR gates) for the example $(7,4)$ cyclic code with

$$
G(X)=1+X+X^{3}
$$

Checking of Non-separable Cyclic Codes

- Checking of cyclic codes:

$$
\left(r_{0}, r_{1}, r_{2}, \ldots, r_{n-1}\right)
$$

- It can be represented by the polynomial

$$
R(X)=r_{0}+r_{1} X+r_{2} X^{2}+\ldots+r_{n-1} X^{n-1}
$$

- If it is valid, then $R(X)=D(X) * G(X)$
- In general, we write

$$
R(X)=D(X) G(X)+S(X)
$$

- $S(X)$: the remainder of the division $R(X) / G(X)$, called syndrome polynomial
$-R(X)$ is valid if $S(X)=0$

Exercise (1)

- Check if the code word (1111111) is a valid $(7,4)$ cyclic code word or not? Assume the generator polynomial is $\mathrm{G}(\mathrm{X})=1+\mathrm{X}^{2}+\mathrm{X}^{3}$
- If valid, what is the corresponding original data word?

Exercise (2)

- Assume the generator polynomial is $\mathrm{G}(\mathrm{X})=1+\mathrm{X}+\mathrm{X}^{3}$.
- Generate non-separable $(7,4)$ cyclic code word for data word

- Check if the code word $(v 0 v 1 \mathrm{v} 2 \mathrm{v} 3 \mathrm{v} 4 \mathrm{v} 5 \mathrm{v} 6)=(1001111)$ is a valid $(7,4)$ cyclic code word or not?

Separable Cyclic Codes

- To generate a separable (n, k) code, the original data polynomial $\mathrm{D}(\mathrm{X})$ is first multiplied by X^{nk} and result is divided by $\mathrm{G}(\mathrm{X})$ to obtain a remainder $\mathrm{R}(\mathrm{X})$:
$\mathrm{X}^{\mathrm{n}-\mathrm{k}_{\mathrm{D}}(\mathrm{X})=\mathrm{Q}(\mathrm{X}) \mathrm{G}(\mathrm{X})+\mathrm{R}(\mathrm{X}), ~(\mathrm{X}}$
$Q(X)=$ Quotient Polynomial
$R(X)=$ Remainder Polynomial
$G(X)=$ Generator Polynomial
$\mathrm{D}(\mathrm{X})=$ Data Polynomial
$V(X)=\mathrm{X}^{\mathrm{n}}-\mathrm{k} \mathrm{D}(\mathrm{X})+\mathrm{R}(\mathrm{X})=\mathrm{Q}(\mathrm{X}) \mathrm{G}(\mathrm{X})$
$=d_{k-1} X^{n-1}+d_{k-2} X^{n-2}+\ldots+d_{1} X^{n-k+1}+d_{0} X^{n-k}$
$+\mathrm{r}_{\mathrm{n}-\mathrm{k}-1} \mathrm{X}^{\mathrm{n}-\mathrm{k}-1}+\ldots+\mathrm{r}_{1} \mathrm{X}+\mathrm{r}_{0}$
- The code word v is given by the coefficients of the code polynomial which are

$$
v=\left(r_{0}, r_{1}, \ldots, r_{n-k-1}, d_{0}, d_{1}, \ldots, d_{k-2}, d_{k-1}\right)
$$

Dr. Xing

Exercise (3)

- Construct a separate $(7,4)$ cycle code with data d0d1d2d3=1001 and
\checkmark Basic concepts
- Example codes
$\sqrt{ }$ Parity codes: Hamming SEC code, Horizontal and Vertical Parity code
$\sqrt{ }$ m-of-n
$\sqrt{ }$ Berger
$\sqrt{ }$ Checksums
$\sqrt{ }$ Cyclic
- Arithmetic
- Code selection issue

Arithmetic Codes

- Useful in checking arithmetic operations
- Basic concept: data presented to arithmetic operation is encoded before operations; resulting code words are checked after completing arithmetic operations. If not valid, an error condition is detected
- Must be invariant to a set of arithmetic operations

$$
A\left(b^{*} c\right)=A(b) * A(c)
$$

- Examples
- AN codes
- Residue codes
- Inverse residue codes

AN Codes (1)

- Formed by multiplying data word \mathbf{N} by some constant A
- Invariant to addition and subtraction, but not multiplication and division
- The magnitude of A determines
- Number of extra bits for code word
- The error detection capability
- An example: 3 N code \rightarrow all words encoded by multiplying by 3 (Table 3.11)
- $(\mathrm{n}+2)$ bits are required for 3 N code of n-bit data words

AN Codes (2)

- For binary codes, A must not be a power of 2 because an AN code with $\mathrm{A}=2^{\mathrm{a}}$ cannot detect any single-bit errors.
- Multiplication by $2^{\text {a }}$ is equivalent to a left arithmetic shift of binary data word
- Changing any data bit still yields a result that is evenly divisible by $2^{\mathrm{a}} \rightarrow \mathrm{a}$ valid AN code \rightarrow the error remains undetected!

Residue Codes

- Formed by appending the residue (r) of a data word to the original data word (N): $\mathrm{N} \mid \mathrm{r}$
- A separable code
- Residue of a number is simply the remainder generated when the number is divided by an integer m :

$$
N=I m+r \quad \text { or } \quad \frac{N}{m}=I+\frac{r}{m}
$$

- m: check base or modulus
- I: quotient
- r: remainder or residue
- An example: separable residue code words for 4-bit data words using a modulus of 3 (Table 3.12)

Inverse-Residue Codes

- Formed by appending the inverseresidue q of a data word N to that data word: $\mathrm{N} \mid \mathrm{q}$
- Inverse residue q of a number is simply $m-r$, where r is the remainder generated when the number is divided by an integer m :
- A separable code
- An example: separable inverseresidue code words for 4-bit data words using a modulus of 3 (Table 3.13)
- Parity codes
- Single-bit parity codes
- Multiple-bit parity codes (Hamming single error correcting codes)
- Horizontal and vertical parity codes
- m-of-n codes (separable/nonseparable)
- Berger codes (separable)
- Checksum (separable)
- SPC, DPC, Honeywell, Residue
- Cyclic codes (separable/nonseparable)
- Arithmetic codes
- AN, residue, inverse-residue

Code Selection Issue

- The key: select a code that fulfills the desired error detection/correction capability while maintaining costs at an acceptable level
- Information redundancy involves other forms of redundancy (time: encoding/decoding process; hardware redundancy: additional storage for extra bits)
- Three major factors / decisions
- Whether or not the code needs to be separable
- Whether error detection, error correction, or both are required
- Number of bit errors needs to be detected or corrected

Summary of Lecture \#6

- m-of-n codes (separable/non-separable) can detect all single-bit errors and all multiple, unidirectional errors
- Berger codes are separable unidirectional error detecting codes; which can be manipulated so that they are invariant to the arithmetic/logical operations
- Checksum (SPC/DPC/Honeywell/Residue) codes are separable codes and can only detect errors but not locate/correct errors
- Cyclic codes are invariant to the endaround shift operation; are best represented and analyzed using polynomial algebra; can be separable and non-separable
- AN codes are invariant to addition and subtraction, but not multiplication and division
- Both residue and inverse-residue codes are separable codes

Things to Do

- Homework
- Class Project
- Proposal due Wednesday Oct. 5

Next topic:
 Time redundancy \& Software redundancy!

