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ECE454/544: Fault-Tolerant 
Computing & Reliability Engineering

Lecture #5 –
Information Redundancy Techniques (II)

Instructor: Dr. Liudong Xing
Fall 2022
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Administrative Issues 
(9/21, Wednesday)

• Homework#1 due today
• Homework#2 assigned today

– Please download the problems from the 
course website: 
https://xingteaching.sites.umassd.edu/ 

– Due Sept. 28, Wednesday

• Project Proposal
– Due Oct. 5, Wednesday

– Refer to Proposal Guideline on the course 
website
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Review of Lecture #4

• Basic concepts: 
– Code, code word, binary code, error detecting 

/correcting code, encoding / decoding process
– Error models for code development: bit / 

symmetric / asymmetric / unidirectional /byte 
errors

– Hamming distance, code distance, error 
detection/correction capabilities (3 theorems)

• Parity codes  
– Single-bit and multiple-bit parity codes
– Hamming single error correcting (SEC) codes

• Calculate number of check bits
• Arrange bit positions
• Generate the check bits
• Correct the erroneous bit according to the 

syndrome word
– Horizontal and Vertical parity code: can correct 

any single-bit errors in groups of data words 
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Agenda

Basic concepts
• Example codes

√ Parity codes: Hamming SEC code,
Horizontal and Vertical Parity code

– m-of-n
– Berger
– Checksums
– Cyclic
– Arithmetic

• Code selection issue

L#4
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m-of-n Codes

• Each code word has exactly m 1s out of a 
total of n bits. 
– each code word has a weight of m.

• CD = ?

• The m-of-n code can detect all single-bit 
errors and all multiple, unidirectional 
errors
– Any single-bit error forces the resulting 

erroneous word to have either (m+1) or (m-1) 
ones.

– Unidirectional: errors are either a change of a 
1 to a 0 or a change of a 0 to a 1

2
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Separable m-of-n Codes

• It is possible to construct separable m-of-n 
codes as:

k-of-2k code
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Example k-of-2k Code

• Disadvantage: 100% redundancy
• Advantage: separable code both encoding 

and decoding processes are simple

3-of-6 code
000 111
001 110
010 101
011 100
100 011
101 010
110 001
111 000

Original 
Information

Appended Check 
Bits
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Property of m-of-2m Code

• Suppose we have two code words A and B

• In modulo-2 addition

• The modulo-2 addition of two m-of-2m code 
words generates a code word where the 
check portion is the exact replica of the 
functional portion.

check portion data portion 
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Non-separable m-of-n Code

• The encoding and decoding can be 
performed by look-up tables

• Can detect any single-bit errors

Have the same error detection capabilities 
as the single-bit parity code 

Non-separable 2-of-5 code for BCD data
Dec. digit BCD data 2-of-5 code
0 0000 00011
1 0001 11000
2 0010 10100
3 0011 01100
4 0100 10010
5 0101 01010
6 0110 00110
7 0111 10001
8 1000 01001
9 1001 00101

Dr. Xing Lecture #5 10

Agenda

Basic concepts
• Example codes

√ Parity codes: Hamming SEC code,
Horizontal and Vertical Parity code

√ m-of-n
– Berger
– Checksums
– Cyclic
– Arithmetic

• Code selection issue
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Berger Codes

• A separable code formed by appending 
a check symbol which is simply the 
count of the number of 0s (N0) in the 
original information.

• The check bits br-1, ... , b1, b0 are the 
binary representation of N0
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Example

• Berger code words for 4-bit information 
words
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Characteristics of Berger Codes

• Berger codes detect all 
unidirectional errors in the 
information bits
since any number of 0 to 1 errors 
will decrease the number of 0s  in 
the information, and any number of 
1 to 0 errors will increase the 
number of 0s in the information

• Berger codes detect all 
unidirectional errors in the check 
bits
since any number of 1 to 0 errors 
will decrease the check value, and 
any number of 0 to 1 errors will 
increase the check value
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Characteristics of Berger Codes
(Cont’d)

• If 1 to 0 errors occur in both the 
information and the check symbol, 
the number of 0s in the information 
will increase while the check value 
will decrease

• If 0 to 1 errors occur in both the 
information and the check symbol, 
the number of 0s (zeros) in the 
information will decrease while the 
check value will increase
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Berger Codes: 
How many check bits?

• For k information bits, the number of check 
bits Nc in the Berger code is given by

• The redundancy is high when the number of 
information bits is small

• As number of information bits increases, the 
efficiency improves substantially

 )1(log2  kNC

# of 
information 
bits

# of check 
bits

Percentage 
redundancy

4 3 75%
8 4 50%
16 5 31.25%
32 6 18.75%
64 7 10.94%
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Invariant of Berger Codes

• It is possible to manipulate Berger 
code words such that they are 
invariant to the following 
operations
– Arithmetic operations: addition, 

subtraction, multiplication and 
division

– Logical operations: AND, OR, XOR, 
NOT, ROTATE, and SHIFT
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Addition Example

• Suppose we want to ADD two n+1-bit 
binary numbers and a carry-in bit cin

• Let the Berger check symbol of X be Xc, 
of Y be Yc, of the sum S be Sc and the 
check symbol of the internal carries C as 
Cc, thus:

• Example:
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AND Example

• Suppose we want to AND two n+1-bit 
binary numbers

• Let the Berger check symbol of X be Xc, 
of Y be Yc, and check symbol of X AND 
Y be              , thus:

• Example:
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Error Detection Using Berger 
Codes

• Berger code processor
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Agenda

Basic concepts
• Example codes

√ Parity codes: Hamming SEC code,
Horizontal and Vertical Parity code

√ m-of-n
√ Berger
– Checksums
– Cyclic
– Arithmetic

• Code selection issue



11

Dr. Xing 21

Checksum Codes  

• A form of separable codes

• Checksum is a quantity of information 
added to the block of data to help detect 
errors 
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The Checksum

• Basically the sum of original data

• Difference between various forms of 
checksum is the way in which the 
summation is generated

– Single-precision
– Double-precision
– Honeywell
– Residue

All checksums can detect errors but not 
locate them!
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Single-Precision Checksum (SPC)

• Formed by performing binary addition of 
the data to be protected by the checksum 
and ignoring any overflow that occurs;
– An overflow occurs if the binary sum of the 

n-bit data exceeds 2n-1

• Formed by adding the n-bit data in a 
modulo-2n style

• Example:

• Difficulty: information, thus the ability 
to detect errors can be lost in the ignored 
overflow  an example (extra notes on 
board)

0001(addition)  +
0110(carry ignored) 1

0110
1000
1110

Original
Data

Checksum
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Double-Precision Checksum 
(DPC)

• Compute the checksum in double precision
• Compute a 2n-bit checksum for a block of 

n-bit words using modulo-22n arithmetic

• Can overcome the difficulty of SPC

• An example (extra notes)
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Honeywell Checksum 

• Concatenate consecutive words to form a 
collection of double length words

• Assume there are n k-bit words, a set of n/2 
2k-bit words is formed, and a checksum is 
formed over the newly double-length 
words  a bit error appearing in the same 
bit positions of all words will affect at least 
two bit positions of the checksum!

• An example (extra notes)

Word 4Word 3
Word 6Word 5

……

Word 2Word 1

Word nWord n-1

Checksum

……

Word 1
Word 2
Word 3

Word n
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Residue Checksum 
• Same basic concept as in SPC except that 

the carry bit out of the MSB position is not 
ignored but is added back to the checksum 
in an end-around carry fashion

• An example (extra notes)

……

Word 1
Word 2
Word 3

Word n

Sum of DataC

Carry from
binary addition

C End-Around 
Carry Addition

Checksum
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Agenda

Basic concepts
• Example codes

√ Parity codes: Hamming SEC code,
Horizontal and Vertical Parity code

√ m-of-n
√ Berger
√ Checksums
– Cyclic
– Arithmetic

• Code selection issue
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Cyclic Codes (1)

• Every cyclic/end-around shift of a code 
word is also a code word

• Often used in sequential devices (disks, 
tapes)

• Cyclic codes are best represented and 
analyzed through the use of polynomial 
algebra

• Each bit of the code word v can be 
represented as a coefficient of the 
polynomial V(X)
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Cyclic Codes (2)

• Generator Polynomial - The set of code words 
for an (n , k) cyclic code is uniquely generated 
by its generator polynomial G(X)

• Example: nonseparable cyclic code

Modulo-2 operation!
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Cyclic Codes (3)

• The generator polynomial G(X) has the 
following properties
– The degree of G(X) is n-k
– Each code word V(X) is a multiple of G(X) and is 

computed as V(X) = D(X)G(X)
– G(X) must be a factor of Xn – 1

• The (n,k) cyclic codes can detect all single-
bit errors and all multiple, adjacent errors 
affecting fewer than (n-k) bits 
– Communication applications with burst errors
– A burst error is the result of a transient fault and 

usually introduces a number of adjacent errors 
into a given data item

– (n,k) cyclic codes can detect adjacent errors as 
long as number of adjacent bits affected <= (n-k)

• Non-separable and separable
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Non-separable Cyclic Codes 

• Encoding process: simply 
multiplying the data polynomial 
D(X) by the generator polynomial 
G(X)

• Implementation using 
combinatorial circuits
– For binary codes the coefficients of 

each polynomial (generator, data, and 
code) are either 0 (zero) or 1 (one)

– Consequently, the coefficients of the 
code polynomial are simply 
summations of the appropriate data bits

– The summations are modulo 2 
summations which are equivalent to 
EXCLUSIVE-OR gates
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Non-separable Cyclic Coding 
Using Combinatorial Circuits

• The encoding process for a particular 
generator polynomial can be 
performed using a combinational 
circuit containing only 
EXCLUSIVE-OR gates
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Example: (7, 4) Cyclic Code

• The generator polynomial is

• Also, assume that the data polynomial is 
given by

• The resulting code polynomial is given by

• The code word is given by
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Combinatorial Circuits for the 
Example

• Combinatorial circuit composed of modulo-
2 adders (exclusive-OR gates) for the 
example (7, 4) cyclic code with 
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Checking of Non-separable Cyclic 
Codes

• Checking of cyclic codes:

• It can be represented by the polynomial

• If it is valid, then R(X)=D(X)*G(X) 

• In general, we write

– S(X): the remainder of the division 
R(X)/G(X), called syndrome polynomial

– R(X) is valid if S(X)=0
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Exercise (1)

• Check if the code word (1111111) is 
a valid (7,4) cyclic code word or 
not? Assume the generator 
polynomial is G(X)=1+X2+X3

• If valid, what is the corresponding 
original data word? 
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Exercise (2)
• Assume the generator polynomial is 

G(X)=1+X+X3. 
– Generate non-separable (7,4) cyclic 

code word for data word 
(d0d1d2d3)=(1 1 1 1). 

– Check if the code word 
(v0v1v2v3v4v5v6)=(1001111) is a 
valid (7,4) cyclic code word or not?

Dr. Xing 38

Separable Cyclic Codes
• To generate a separable (n,k) code, the 

original data polynomial D(X) is first 
multiplied by Xn-k and result is divided by 
G(X) to obtain a remainder R(X):

• The code word v is given by the coefficients 
of the code polynomial which are

),,...,,,,...,,( 1210110  kkkn ddddrrrv
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Exercise (3)

• Construct a separate (7,4) cycle code 
with data d0d1d2d3=1001 and 
G(X)=1+X+X3.
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Agenda

Basic concepts
• Example codes

√ Parity codes: Hamming SEC code,
Horizontal and Vertical Parity code

√ m-of-n
√ Berger
√ Checksums
√ Cyclic
– Arithmetic

• Code selection issue
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Arithmetic Codes

• Useful in checking arithmetic operations

• Basic concept: data presented to arithmetic 
operation is encoded before operations; 
resulting code words are checked after 
completing arithmetic operations. If not 
valid, an error condition is detected

• Must be invariant to a set of  arithmetic 
operations

A(b*c)=A(b)*A(c)

• Examples
– AN codes
– Residue codes
– Inverse residue codes
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AN Codes (1)

• Formed by multiplying data word N
by some constant A

• Invariant to addition and 
subtraction, but not multiplication 
and division

• The magnitude of A determines 
– Number of extra bits for code word
– The error detection capability

• An example: 3N code  all words 
encoded by multiplying by 3 (Table 
3.11)
– (n+2) bits are required for 3N code of 

n-bit data words
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AN Codes (2)

• For binary codes, A must not be a 
power of 2 because an AN code with 
A=2a cannot detect any single-bit 
errors.
– Multiplication by 2a is equivalent to a 

left arithmetic shift of binary data word
– Changing any data bit still yields a 

result that is evenly divisible by 2a a 
valid AN code  the error remains 
undetected!

Dr. Xing 44

Residue Codes

• Formed by appending the residue (r) 
of a data word to the original data 
word (N): N|r

• A separable code
• Residue of a number is simply the 

remainder generated when the number 
is divided by an integer m:

– m: check base or  modulus
– I: quotient
– r: remainder or residue

• An example: separable residue code 
words for 4-bit data words using a 
modulus of 3 (Table 3.12)

or
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Inverse-Residue Codes

• Formed by appending the inverse-
residue q of a data word N to that 
data word: N|q

• Inverse residue q of a number is 
simply m-r, where r is the remainder 
generated when the number is 
divided by an integer m:

• A separable code

• An example: separable inverse-
residue code words for 4-bit data 
words using a modulus of 3 (Table 
3.13)

Dr. Xing 46

Review of Codes

• Parity codes
– Single-bit parity codes 
– Multiple-bit parity codes (Hamming 

single error correcting codes)
– Horizontal and vertical parity codes

• m-of-n codes (separable/non-
separable) 

• Berger codes (separable) 
• Checksum (separable)

– SPC, DPC, Honeywell, Residue

• Cyclic codes (separable/non-
separable)

• Arithmetic codes
– AN, residue, inverse-residue
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Code Selection Issue

• The key: select a code that fulfills the 
desired error detection/correction 
capability while maintaining costs at an 
acceptable level
– Information redundancy involves other 

forms of redundancy (time: 
encoding/decoding process; hardware 
redundancy: additional storage for extra 
bits)

• Three major factors / decisions
– Whether or not the code needs to be 

separable
– Whether error detection, error correction, 

or both are required
– Number of bit errors needs to be detected 

or corrected
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Summary of Lecture #6

• m-of-n codes (separable/non-separable) can 
detect all single-bit errors and all multiple, 
unidirectional errors

• Berger codes are separable unidirectional 
error detecting codes; which can be 
manipulated so that they are invariant to 
the arithmetic/logical operations

• Checksum (SPC/DPC/Honeywell/Residue) 
codes are separable codes and can only 
detect errors but not locate/correct errors

• Cyclic codes are invariant to the end-
around shift operation; are best represented 
and analyzed using polynomial algebra; 
can be separable and non-separable

• AN codes are invariant to addition and 
subtraction, but not multiplication and 
division

• Both residue and inverse-residue codes are 
separable codes
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Things to Do

• Homework  

• Class Project  
– Proposal due Wednesday Oct. 5

Next topic:

Time redundancy & Software 
redundancy!


