
1

ECE454/544: Fault-Tolerant
Computing & Reliability Engineering

Lecture #5 –
Information Redundancy Techniques (II)

Instructor: Dr. Liudong Xing
Fall 2022

Dr. Xing 2

Administrative Issues
(9/21, Wednesday)

• Homework#1 due today
• Homework#2 assigned today

– Please download the problems from the
course website:
https://xingteaching.sites.umassd.edu/

– Due Sept. 28, Wednesday

• Project Proposal
– Due Oct. 5, Wednesday

– Refer to Proposal Guideline on the course
website

2

Dr. Xing 3

Review of Lecture #4

• Basic concepts:
– Code, code word, binary code, error detecting

/correcting code, encoding / decoding process
– Error models for code development: bit /

symmetric / asymmetric / unidirectional /byte
errors

– Hamming distance, code distance, error
detection/correction capabilities (3 theorems)

• Parity codes
– Single-bit and multiple-bit parity codes
– Hamming single error correcting (SEC) codes

• Calculate number of check bits
• Arrange bit positions
• Generate the check bits
• Correct the erroneous bit according to the

syndrome word
– Horizontal and Vertical parity code: can correct

any single-bit errors in groups of data words

Dr. Xing 4

Agenda

Basic concepts
• Example codes

√ Parity codes: Hamming SEC code,
Horizontal and Vertical Parity code

– m-of-n
– Berger
– Checksums
– Cyclic
– Arithmetic

• Code selection issue

L#4

3

Dr. Xing 5

m-of-n Codes

• Each code word has exactly m 1s out of a
total of n bits.
– each code word has a weight of m.

• CD = ?

• The m-of-n code can detect all single-bit
errors and all multiple, unidirectional
errors
– Any single-bit error forces the resulting

erroneous word to have either (m+1) or (m-1)
ones.

– Unidirectional: errors are either a change of a
1 to a 0 or a change of a 0 to a 1

2

Dr. Xing 6

Separable m-of-n Codes

• It is possible to construct separable m-of-n
codes as:

k-of-2k code

4

Dr. Xing 7

Example k-of-2k Code

• Disadvantage: 100% redundancy
• Advantage: separable code both encoding

and decoding processes are simple

3-of-6 code
000 111
001 110
010 101
011 100
100 011
101 010
110 001
111 000

Original
Information

Appended Check
Bits

Dr. Xing 8

Property of m-of-2m Code

• Suppose we have two code words A and B

• In modulo-2 addition

• The modulo-2 addition of two m-of-2m code
words generates a code word where the
check portion is the exact replica of the
functional portion.

check portion data portion

5

Dr. Xing 9

Non-separable m-of-n Code

• The encoding and decoding can be
performed by look-up tables

• Can detect any single-bit errors

Have the same error detection capabilities
as the single-bit parity code

Non-separable 2-of-5 code for BCD data
Dec. digit BCD data 2-of-5 code
0 0000 00011
1 0001 11000
2 0010 10100
3 0011 01100
4 0100 10010
5 0101 01010
6 0110 00110
7 0111 10001
8 1000 01001
9 1001 00101

Dr. Xing Lecture #5 10

Agenda

Basic concepts
• Example codes

√ Parity codes: Hamming SEC code,
Horizontal and Vertical Parity code

√ m-of-n
– Berger
– Checksums
– Cyclic
– Arithmetic

• Code selection issue

6

Dr. Xing Lecture #5 11

Berger Codes

• A separable code formed by appending
a check symbol which is simply the
count of the number of 0s (N0) in the
original information.

• The check bits br-1, ... , b1, b0 are the
binary representation of N0

Dr. Xing Lecture #5 12

Example

• Berger code words for 4-bit information
words

7

Dr. Xing Lecture #5 13

Characteristics of Berger Codes

• Berger codes detect all
unidirectional errors in the
information bits
since any number of 0 to 1 errors
will decrease the number of 0s in
the information, and any number of
1 to 0 errors will increase the
number of 0s in the information

• Berger codes detect all
unidirectional errors in the check
bits
since any number of 1 to 0 errors
will decrease the check value, and
any number of 0 to 1 errors will
increase the check value

Dr. Xing Lecture #5 14

Characteristics of Berger Codes
(Cont’d)

• If 1 to 0 errors occur in both the
information and the check symbol,
the number of 0s in the information
will increase while the check value
will decrease

• If 0 to 1 errors occur in both the
information and the check symbol,
the number of 0s (zeros) in the
information will decrease while the
check value will increase

8

Dr. Xing Lecture #5 15

Berger Codes:
How many check bits?

• For k information bits, the number of check
bits Nc in the Berger code is given by

• The redundancy is high when the number of
information bits is small

• As number of information bits increases, the
efficiency improves substantially

)1(log2 kNC

of
information
bits

of check
bits

Percentage
redundancy

4 3 75%
8 4 50%
16 5 31.25%
32 6 18.75%
64 7 10.94%

Dr. Xing Lecture #5 16

Invariant of Berger Codes

• It is possible to manipulate Berger
code words such that they are
invariant to the following
operations
– Arithmetic operations: addition,

subtraction, multiplication and
division

– Logical operations: AND, OR, XOR,
NOT, ROTATE, and SHIFT

9

Dr. Xing Lecture #5 17

Addition Example

• Suppose we want to ADD two n+1-bit
binary numbers and a carry-in bit cin

• Let the Berger check symbol of X be Xc,
of Y be Yc, of the sum S be Sc and the
check symbol of the internal carries C as
Cc, thus:

• Example:

Dr. Xing Lecture #5 18

AND Example

• Suppose we want to AND two n+1-bit
binary numbers

• Let the Berger check symbol of X be Xc,
of Y be Yc, and check symbol of X AND
Y be , thus:

• Example:

10

Dr. Xing Lecture #5 19

Error Detection Using Berger
Codes

• Berger code processor

Dr. Xing Lecture #5 20

Agenda

Basic concepts
• Example codes

√ Parity codes: Hamming SEC code,
Horizontal and Vertical Parity code

√ m-of-n
√ Berger
– Checksums
– Cyclic
– Arithmetic

• Code selection issue

11

Dr. Xing 21

Checksum Codes

• A form of separable codes

• Checksum is a quantity of information
added to the block of data to help detect
errors

Dr. Xing 22

The Checksum

• Basically the sum of original data

• Difference between various forms of
checksum is the way in which the
summation is generated

– Single-precision
– Double-precision
– Honeywell
– Residue

All checksums can detect errors but not
locate them!

12

Dr. Xing 23

Single-Precision Checksum (SPC)

• Formed by performing binary addition of
the data to be protected by the checksum
and ignoring any overflow that occurs;
– An overflow occurs if the binary sum of the

n-bit data exceeds 2n-1

• Formed by adding the n-bit data in a
modulo-2n style

• Example:

• Difficulty: information, thus the ability
to detect errors can be lost in the ignored
overflow an example (extra notes on
board)

0001(addition) +
0110(carry ignored) 1

0110
1000
1110

Original
Data

Checksum

Dr. Xing 24

Double-Precision Checksum
(DPC)

• Compute the checksum in double precision
• Compute a 2n-bit checksum for a block of

n-bit words using modulo-22n arithmetic

• Can overcome the difficulty of SPC

• An example (extra notes)

13

Dr. Xing 25

Honeywell Checksum

• Concatenate consecutive words to form a
collection of double length words

• Assume there are n k-bit words, a set of n/2
2k-bit words is formed, and a checksum is
formed over the newly double-length
words a bit error appearing in the same
bit positions of all words will affect at least
two bit positions of the checksum!

• An example (extra notes)

Word 4Word 3
Word 6Word 5

……

Word 2Word 1

Word nWord n-1

Checksum

……

Word 1
Word 2
Word 3

Word n

Dr. Xing 26

Residue Checksum
• Same basic concept as in SPC except that

the carry bit out of the MSB position is not
ignored but is added back to the checksum
in an end-around carry fashion

• An example (extra notes)

……

Word 1
Word 2
Word 3

Word n

Sum of DataC

Carry from
binary addition

C End-Around
Carry Addition

Checksum

14

Dr. Xing 27

Agenda

Basic concepts
• Example codes

√ Parity codes: Hamming SEC code,
Horizontal and Vertical Parity code

√ m-of-n
√ Berger
√ Checksums
– Cyclic
– Arithmetic

• Code selection issue

Dr. Xing 28

Cyclic Codes (1)

• Every cyclic/end-around shift of a code
word is also a code word

• Often used in sequential devices (disks,
tapes)

• Cyclic codes are best represented and
analyzed through the use of polynomial
algebra

• Each bit of the code word v can be
represented as a coefficient of the
polynomial V(X)

15

Dr. Xing 29

Cyclic Codes (2)

• Generator Polynomial - The set of code words
for an (n , k) cyclic code is uniquely generated
by its generator polynomial G(X)

• Example: nonseparable cyclic code

Modulo-2 operation!

Dr. Xing 30

Cyclic Codes (3)

• The generator polynomial G(X) has the
following properties
– The degree of G(X) is n-k
– Each code word V(X) is a multiple of G(X) and is

computed as V(X) = D(X)G(X)
– G(X) must be a factor of Xn – 1

• The (n,k) cyclic codes can detect all single-
bit errors and all multiple, adjacent errors
affecting fewer than (n-k) bits
– Communication applications with burst errors
– A burst error is the result of a transient fault and

usually introduces a number of adjacent errors
into a given data item

– (n,k) cyclic codes can detect adjacent errors as
long as number of adjacent bits affected <= (n-k)

• Non-separable and separable

16

Dr. Xing 31

Non-separable Cyclic Codes

• Encoding process: simply
multiplying the data polynomial
D(X) by the generator polynomial
G(X)

• Implementation using
combinatorial circuits
– For binary codes the coefficients of

each polynomial (generator, data, and
code) are either 0 (zero) or 1 (one)

– Consequently, the coefficients of the
code polynomial are simply
summations of the appropriate data bits

– The summations are modulo 2
summations which are equivalent to
EXCLUSIVE-OR gates

Dr. Xing 32

Non-separable Cyclic Coding
Using Combinatorial Circuits

• The encoding process for a particular
generator polynomial can be
performed using a combinational
circuit containing only
EXCLUSIVE-OR gates

17

Dr. Xing 33

Example: (7, 4) Cyclic Code

• The generator polynomial is

• Also, assume that the data polynomial is
given by

• The resulting code polynomial is given by

• The code word is given by

Dr. Xing 34

Combinatorial Circuits for the
Example

• Combinatorial circuit composed of modulo-
2 adders (exclusive-OR gates) for the
example (7, 4) cyclic code with

18

Dr. Xing 35

Checking of Non-separable Cyclic
Codes

• Checking of cyclic codes:

• It can be represented by the polynomial

• If it is valid, then R(X)=D(X)*G(X)

• In general, we write

– S(X): the remainder of the division
R(X)/G(X), called syndrome polynomial

– R(X) is valid if S(X)=0

Dr. Xing 36

Exercise (1)

• Check if the code word (1111111) is
a valid (7,4) cyclic code word or
not? Assume the generator
polynomial is G(X)=1+X2+X3

• If valid, what is the corresponding
original data word?

19

Dr. Xing Lecture#6 37

Exercise (2)
• Assume the generator polynomial is

G(X)=1+X+X3.
– Generate non-separable (7,4) cyclic

code word for data word
(d0d1d2d3)=(1 1 1 1).

– Check if the code word
(v0v1v2v3v4v5v6)=(1001111) is a
valid (7,4) cyclic code word or not?

Dr. Xing 38

Separable Cyclic Codes
• To generate a separable (n,k) code, the

original data polynomial D(X) is first
multiplied by Xn-k and result is divided by
G(X) to obtain a remainder R(X):

• The code word v is given by the coefficients
of the code polynomial which are

),,...,,,,...,,(1210110 kkkn ddddrrrv

20

Dr. Xing 39

Exercise (3)

• Construct a separate (7,4) cycle code
with data d0d1d2d3=1001 and
G(X)=1+X+X3.

Dr. Xing 40

Agenda

Basic concepts
• Example codes

√ Parity codes: Hamming SEC code,
Horizontal and Vertical Parity code

√ m-of-n
√ Berger
√ Checksums
√ Cyclic
– Arithmetic

• Code selection issue

21

Dr. Xing 41

Arithmetic Codes

• Useful in checking arithmetic operations

• Basic concept: data presented to arithmetic
operation is encoded before operations;
resulting code words are checked after
completing arithmetic operations. If not
valid, an error condition is detected

• Must be invariant to a set of arithmetic
operations

A(b*c)=A(b)*A(c)

• Examples
– AN codes
– Residue codes
– Inverse residue codes

Dr. Xing 42

AN Codes (1)

• Formed by multiplying data word N
by some constant A

• Invariant to addition and
subtraction, but not multiplication
and division

• The magnitude of A determines
– Number of extra bits for code word
– The error detection capability

• An example: 3N code all words
encoded by multiplying by 3 (Table
3.11)
– (n+2) bits are required for 3N code of

n-bit data words

22

Dr. Xing 43

AN Codes (2)

• For binary codes, A must not be a
power of 2 because an AN code with
A=2a cannot detect any single-bit
errors.
– Multiplication by 2a is equivalent to a

left arithmetic shift of binary data word
– Changing any data bit still yields a

result that is evenly divisible by 2a a
valid AN code the error remains
undetected!

Dr. Xing 44

Residue Codes

• Formed by appending the residue (r)
of a data word to the original data
word (N): N|r

• A separable code
• Residue of a number is simply the

remainder generated when the number
is divided by an integer m:

– m: check base or modulus
– I: quotient
– r: remainder or residue

• An example: separable residue code
words for 4-bit data words using a
modulus of 3 (Table 3.12)

or

23

Dr. Xing 45

Inverse-Residue Codes

• Formed by appending the inverse-
residue q of a data word N to that
data word: N|q

• Inverse residue q of a number is
simply m-r, where r is the remainder
generated when the number is
divided by an integer m:

• A separable code

• An example: separable inverse-
residue code words for 4-bit data
words using a modulus of 3 (Table
3.13)

Dr. Xing 46

Review of Codes

• Parity codes
– Single-bit parity codes
– Multiple-bit parity codes (Hamming

single error correcting codes)
– Horizontal and vertical parity codes

• m-of-n codes (separable/non-
separable)

• Berger codes (separable)
• Checksum (separable)

– SPC, DPC, Honeywell, Residue

• Cyclic codes (separable/non-
separable)

• Arithmetic codes
– AN, residue, inverse-residue

24

Dr. Xing 47

Code Selection Issue

• The key: select a code that fulfills the
desired error detection/correction
capability while maintaining costs at an
acceptable level
– Information redundancy involves other

forms of redundancy (time:
encoding/decoding process; hardware
redundancy: additional storage for extra
bits)

• Three major factors / decisions
– Whether or not the code needs to be

separable
– Whether error detection, error correction,

or both are required
– Number of bit errors needs to be detected

or corrected

Dr. Xing 48

Summary of Lecture #6

• m-of-n codes (separable/non-separable) can
detect all single-bit errors and all multiple,
unidirectional errors

• Berger codes are separable unidirectional
error detecting codes; which can be
manipulated so that they are invariant to
the arithmetic/logical operations

• Checksum (SPC/DPC/Honeywell/Residue)
codes are separable codes and can only
detect errors but not locate/correct errors

• Cyclic codes are invariant to the end-
around shift operation; are best represented
and analyzed using polynomial algebra;
can be separable and non-separable

• AN codes are invariant to addition and
subtraction, but not multiplication and
division

• Both residue and inverse-residue codes are
separable codes

25

Dr. Xing 49

Things to Do

• Homework

• Class Project
– Proposal due Wednesday Oct. 5

Next topic:

Time redundancy & Software
redundancy!

