
1

ECE454/544: Fault-Tolerant
Computing & Reliability Engineering

Lecture #6 –
Time & Software Redundancy

Techniques

Instructor: Dr. Liudong Xing
Fall 2022

Dr. Xing 2

Administrative Issues

• Homework#2 due 9/28 (W)
• Homework#3 assigned

– Please download the problems from the
course website:
https://xingteaching.sites.umassd.edu/

– Due Oct. 5, Wednesday

• Project Proposal
– Due Oct. 5, Wednesday

– Refer to Proposal Guideline on the course
website

2

Dr. Xing 3

Review of Lecture #5
• m-of-n codes (separable/non-separable) can

detect all single-bit errors and all multiple,
unidirectional errors

• Berger codes are separable unidirectional
error detecting codes; which can be
manipulated so that they are invariant to
the arithmetic/logical operations

• Checksum (SPC/DPC/Honeywell/Residue)
codes are separable codes and can only
detect errors but not locate/correct errors

• Cyclic codes are invariant to the end-
around shift operation; are best represented
and analyzed using polynomial algebra;
can be separable and non-separable

• AN codes are invariant to addition and
subtraction, but not multiplication and
division

• Both residue and inverse-residue codes are
separable codes

• Factors considered in codes selection
Dr. Xing 4

Outline

• Time redundancy techniques
• Software redundancy techniques

3

Dr. Xing 5

Time Redundancy (Agenda)

• Motivations
• Transient fault detection
• Permanent fault detection
• Error correction

Dr. Xing 6

Motivations & Basic Concept
• Both hardware and information

redundancy can require large amounts of
extra hardware for the implementation

• In many applications, time is of much less
importance than hardware and is readily
available because hardware is a physical
entity impacting weight, size, power
consumption, and cost

• Basic concept of time redundancy is the
repetition of computations in ways that
allow faults to be detected

• Time redundancy can reduce the amount of
extra hardware at the cost of using
additional time for achieving fault
detection / correction

4

Dr. Xing 7

Transient Fault Detection

• Computations are repeated at different
points in time and then compared

• If an error is detected, the computation can
be performed again to see if the
discrepancy remains or disappear

Dr. Xing 8

Transient Fault Detection (Cont’d)

• Often used to distinguish between
permanent and transient faults
– Repeat the computation after an error

is detected
– Transient if error conditions clears
– Permanent if problem continues to

exist

5

Dr. Xing 9

Permanent Fault Detection

• Time redundancy combined with
coding schemes (information
redundancy) can detect permanent
faults
– Perform the same computation multiple

times using different coding schemes in
each case

– Example: the arithmetic operations
performed on a processor protected by
some AN arithmetic code

– Case 1:
• First without using any code
• Second use 3N code

– Case 2:
• First use 3N code
• Second use 5N code

Dr. Xing 10

Basic Strategy

• Operands used as presented during 1st

computation/transmission
• Operands encoded using some encoding

function, results decoded and compared with
those obtained during the first operation

6

Dr. Xing 11

Example Approaches

• Alternating logic
– Complementation

• Recomputing with shifted operands
(RESO)
– Arithmetic shift

• Recomputing with swapped operands
(RESWO)
– Swapping function

Different encoding functions employed!

Dr. Xing 12

Example I: Alternating Logic
• Encoding function is the complementation

operation
• Applied to the transmission of digital data

over wire media and fault detection in
digital circuits

• An example: a transmission system
protected using time redundancy
– Data is transmitted over a parallel bus
– At t0, original data is transmitted
– At t1, the complement of the data is transmitted
– If one line of the bus is stuck at either a 1 or a 0,

the two versions of information received won’t
be complements of each other  fault detected!

7

Dr. Xing Lecture#7 13

Example II: Recomputing with Shifted
Operands (RESO)

• Encoding function is a left shift operation
• Decoding function is thus a right shift

operation
• Originally developed as a method to detect

concurrent errors in ALU
• Assume bit-sliced organization of hardware
• Ex: Suppose bit slice 2 of the circuit is faulty

(Johnson89: Figure 3.67)
– The two results will disagree in both 1st and 2nd bits
 fault detected!

Dr. Xing 14

Example III: Recomputing with
Swapped Operands (RESWO)

• Encoding function is swapping operation
• During 1st computation, operands are

manipulated in standard form
• During 2nd computation, upper and lower

halves of the operands are swapped
• If a bit slice is faulty, it operates on either

the lower or upper half of the operands
during 1st computation and the opposite
half of the operands during 2nd

computation
• An example

8

Dr. Xing 15

Error Correction

• Time redundancy can correct errors
in logic operations if the
computations are repeated 3 or more
times

• The errors resulted from the faulty
bit slice can be corrected by
performing a majority voting

• An example
– Perform a logic AND operation on two

8-bit operands
– Johnson89: Figure 3.75

Dr. Xing Lecture#7 16

Error Correction Example

9

Dr. Xing 17

Summary

• Time redundancy can reduce the amount
of extra hardware at the cost of using
additional time in achieving fault
detection/correction

• Often employed to distinguish between
permanent and transient faults

• Time redundancy combined with coding
schemes can detect permanent faults
– Alternating logic, Recomputing with

shifted operands, Recomputing with
swapped operands

• Time redundancy can provide error
correction if computation is repeated 3 or
more times!

Dr. Xing 18

Agenda

Time redundancy techniques
• Software redundancy techniques

10

Dr. Xing 19

Software Redundancy

• The addition of redundant software
to a system, for the purpose of
achieving fault tolerance
– Extra code lines or routines
– Extra versions of the complete program

• Software redundancy techniques
– Consistency checks
– Capability checks
– Recovery blocks (RB)
– N-version programming (NVP)
– N-self-checking programming (NSCP)

Dr. Xing 20

Software Redundancy Techniques (1)

• Consistency checks
– Use a priori knowledge about the

characteristics of information to verify the
correctness of the information

– Examples:
• Sensor readings are often checked to verify that

they lies within an acceptable range of values
• Arithmetic operations

• Capability checks
– Performed to verify if a system possesses

the capability expected
– Examples:

• Run a set of arithmetic/logic operation
instructions to test if the ALU works properly

11

Dr. Xing 21

Software Redundancy Techniques (2)

• Redundancy: multiple (diverse) versions of a
software module

• A decision mechanism: to detect errors and
determine a correct result

• Three popular approaches
– RB (Recovery block)
– NVP (N-version programming)
– NSCP (N-self-checking programming)

Dr. Xing Lecture#7 22

Recovery Block (RB)

• Three software elements
– A primary routine (PR) executing a critical

function
– An acceptance test checking the results of the PR

after each execution
– One or more secondary/alternate routines

• Performing the same function as the PR

• Implementation [Lyu96]

12

Dr. Xing 23

Implementation of RB

• Current state of computation and inputs are
saved by a checkpoint

• The PR calculates a result, which is checked
by the acceptance test
– If test is passed, the check point is

discarded and the RB has performed
successfully

– Otherwise, the system state is rolled
back to the checkpointed values  an
alternate routine attempts the
computation, and the result is checked
by the acceptance test  if test is
passed, the RB has performed
successfully

– If all the alternates fail the test, the RB
has failed

Dr. Xing 24

Combine RB with Hardware
Redundancy

• Distributed recovery block (DRB)
– One processor executes the PR while

the other executes the secondary
– If an error is detected in the primary

results, the results from the secondary
are immediate available

13

Dr. Xing 25

N-Version Programming (NVP)

• A direct software analog of NMR
• Software elements

– 3 or more independent versions of a software module
– A decision algorithm, usually a majority voting

mechanism
– Multiple versions can be executed sequentially on a

single processor or concurrently when sufficient
processing power is available

Dr. Xing 26

NVP (Cont’d)

• To develop independent versions
– Each version is designed and coded by

a separate group of programmers
– Each group works independently of

the others, and communication
between groups is not permitted except
by passing message (which can be
edited or blocked) via the contracting
organization

– Each group designs the software from
the same set of specifications /
requirements

– Each version is subjected to the same
set of comprehensive acceptance tests

14

Dr. Xing 27

NVP (Cont’d)

• Primary difficulties
– Software designers and programmers

can tend to make similar mistakes
• Identical misinterpretation of the

specifications
• Identical, incorrect designs for difficult

portions of the problem

– NVP cannot detect specification
mistakes

Dr. Xing 28

Real Applications of NVP

• Point switching, signal control, and traffic
control in the Goteborg area of the Swedish
State Railway

• Nuclear reactor control systems

• Space shuttle orbiter flight control system
(Shooman Ch 5.9.3 – Figure 5.19)
– Refer to extra note on the course website

for details

15

Space shuttle orbiter flight control system

• Five identical computers (Hardware A-E)
• Two different software systems (A, B)

– A developed by IBM Federal Systems Division
– B developed by Rockwell and draper Labs

• Primary Avionics Software System (PASS)
– Computers A-D, each using software A, are connected in a

voting arrangement
– Can sustain two failures (2-out-of-4 system): If one

computer fails, such computer is disconnected from the
voting arrangement, the remaining ones form a TMR system

– Vulnerable to common-mode software failures in Software A
• Backup Flight Control System (BFS)

Dr. Xing 29 Dr. Xing 30

N-Self-Checking Programming
(NSCP)

• 4 software versions and 4 hardware
components, grouped into two pairs

• Hardware pairs operate in hot standby
redundancy with each hardware
component supporting one software
version

• The four software versions are executed
and results of V1 and V2 are compared,
results of V3 and V4 are compared

16

Dr. Xing 31

General Structure of NSCP

• If either pair of results do not match, that pair is
discarded and only remaining pair is used

• If each pair of results matches, the results of the two
pairs are then compared

• A hardware fault causes the software version
running on it to produce incorrect results, as would
a fault in the software version itself!

• Homework
• ECE544 Project Proposal

– Check out the guidelines from course
website

– Due Wednesday, Oct. 5

Dr. Xing 32

Summary

• Five software redundancy
techniques are discussed:
– Consistency checks
– Capability checks
– Recovery blocks (RB)
– N-version programming (NVP)
– N-self-checking programming (NSCP)

Things to Do

