
1

ECE454/544: Fault-Tolerant
Computing & Reliability Engineering

Lecture #6 –
Time & Software Redundancy

Techniques

Instructor: Dr. Liudong Xing
Fall 2022

Dr. Xing 2

Administrative Issues

• Homework#2 due 9/28 (W)
• Homework#3 assigned

– Please download the problems from the
course website:
https://xingteaching.sites.umassd.edu/

– Due Oct. 5, Wednesday

• Project Proposal
– Due Oct. 5, Wednesday

– Refer to Proposal Guideline on the course
website

2

Dr. Xing 3

Review of Lecture #5
• m-of-n codes (separable/non-separable) can

detect all single-bit errors and all multiple,
unidirectional errors

• Berger codes are separable unidirectional
error detecting codes; which can be
manipulated so that they are invariant to
the arithmetic/logical operations

• Checksum (SPC/DPC/Honeywell/Residue)
codes are separable codes and can only
detect errors but not locate/correct errors

• Cyclic codes are invariant to the end-
around shift operation; are best represented
and analyzed using polynomial algebra;
can be separable and non-separable

• AN codes are invariant to addition and
subtraction, but not multiplication and
division

• Both residue and inverse-residue codes are
separable codes

• Factors considered in codes selection
Dr. Xing 4

Outline

• Time redundancy techniques
• Software redundancy techniques

3

Dr. Xing 5

Time Redundancy (Agenda)

• Motivations
• Transient fault detection
• Permanent fault detection
• Error correction

Dr. Xing 6

Motivations & Basic Concept
• Both hardware and information

redundancy can require large amounts of
extra hardware for the implementation

• In many applications, time is of much less
importance than hardware and is readily
available because hardware is a physical
entity impacting weight, size, power
consumption, and cost

• Basic concept of time redundancy is the
repetition of computations in ways that
allow faults to be detected

• Time redundancy can reduce the amount of
extra hardware at the cost of using
additional time for achieving fault
detection / correction

4

Dr. Xing 7

Transient Fault Detection

• Computations are repeated at different
points in time and then compared

• If an error is detected, the computation can
be performed again to see if the
discrepancy remains or disappear

Dr. Xing 8

Transient Fault Detection (Cont’d)

• Often used to distinguish between
permanent and transient faults
– Repeat the computation after an error

is detected
– Transient if error conditions clears
– Permanent if problem continues to

exist

5

Dr. Xing 9

Permanent Fault Detection

• Time redundancy combined with
coding schemes (information
redundancy) can detect permanent
faults
– Perform the same computation multiple

times using different coding schemes in
each case

– Example: the arithmetic operations
performed on a processor protected by
some AN arithmetic code

– Case 1:
• First without using any code
• Second use 3N code

– Case 2:
• First use 3N code
• Second use 5N code

Dr. Xing 10

Basic Strategy

• Operands used as presented during 1st

computation/transmission
• Operands encoded using some encoding

function, results decoded and compared with
those obtained during the first operation

6

Dr. Xing 11

Example Approaches

• Alternating logic
– Complementation

• Recomputing with shifted operands
(RESO)
– Arithmetic shift

• Recomputing with swapped operands
(RESWO)
– Swapping function

Different encoding functions employed!

Dr. Xing 12

Example I: Alternating Logic
• Encoding function is the complementation

operation
• Applied to the transmission of digital data

over wire media and fault detection in
digital circuits

• An example: a transmission system
protected using time redundancy
– Data is transmitted over a parallel bus
– At t0, original data is transmitted
– At t1, the complement of the data is transmitted
– If one line of the bus is stuck at either a 1 or a 0,

the two versions of information received won’t
be complements of each other fault detected!

7

Dr. Xing Lecture#7 13

Example II: Recomputing with Shifted
Operands (RESO)

• Encoding function is a left shift operation
• Decoding function is thus a right shift

operation
• Originally developed as a method to detect

concurrent errors in ALU
• Assume bit-sliced organization of hardware
• Ex: Suppose bit slice 2 of the circuit is faulty

(Johnson89: Figure 3.67)
– The two results will disagree in both 1st and 2nd bits
 fault detected!

Dr. Xing 14

Example III: Recomputing with
Swapped Operands (RESWO)

• Encoding function is swapping operation
• During 1st computation, operands are

manipulated in standard form
• During 2nd computation, upper and lower

halves of the operands are swapped
• If a bit slice is faulty, it operates on either

the lower or upper half of the operands
during 1st computation and the opposite
half of the operands during 2nd

computation
• An example

8

Dr. Xing 15

Error Correction

• Time redundancy can correct errors
in logic operations if the
computations are repeated 3 or more
times

• The errors resulted from the faulty
bit slice can be corrected by
performing a majority voting

• An example
– Perform a logic AND operation on two

8-bit operands
– Johnson89: Figure 3.75

Dr. Xing Lecture#7 16

Error Correction Example

9

Dr. Xing 17

Summary

• Time redundancy can reduce the amount
of extra hardware at the cost of using
additional time in achieving fault
detection/correction

• Often employed to distinguish between
permanent and transient faults

• Time redundancy combined with coding
schemes can detect permanent faults
– Alternating logic, Recomputing with

shifted operands, Recomputing with
swapped operands

• Time redundancy can provide error
correction if computation is repeated 3 or
more times!

Dr. Xing 18

Agenda

Time redundancy techniques
• Software redundancy techniques

10

Dr. Xing 19

Software Redundancy

• The addition of redundant software
to a system, for the purpose of
achieving fault tolerance
– Extra code lines or routines
– Extra versions of the complete program

• Software redundancy techniques
– Consistency checks
– Capability checks
– Recovery blocks (RB)
– N-version programming (NVP)
– N-self-checking programming (NSCP)

Dr. Xing 20

Software Redundancy Techniques (1)

• Consistency checks
– Use a priori knowledge about the

characteristics of information to verify the
correctness of the information

– Examples:
• Sensor readings are often checked to verify that

they lies within an acceptable range of values
• Arithmetic operations

• Capability checks
– Performed to verify if a system possesses

the capability expected
– Examples:

• Run a set of arithmetic/logic operation
instructions to test if the ALU works properly

11

Dr. Xing 21

Software Redundancy Techniques (2)

• Redundancy: multiple (diverse) versions of a
software module

• A decision mechanism: to detect errors and
determine a correct result

• Three popular approaches
– RB (Recovery block)
– NVP (N-version programming)
– NSCP (N-self-checking programming)

Dr. Xing Lecture#7 22

Recovery Block (RB)

• Three software elements
– A primary routine (PR) executing a critical

function
– An acceptance test checking the results of the PR

after each execution
– One or more secondary/alternate routines

• Performing the same function as the PR

• Implementation [Lyu96]

12

Dr. Xing 23

Implementation of RB

• Current state of computation and inputs are
saved by a checkpoint

• The PR calculates a result, which is checked
by the acceptance test
– If test is passed, the check point is

discarded and the RB has performed
successfully

– Otherwise, the system state is rolled
back to the checkpointed values an
alternate routine attempts the
computation, and the result is checked
by the acceptance test if test is
passed, the RB has performed
successfully

– If all the alternates fail the test, the RB
has failed

Dr. Xing 24

Combine RB with Hardware
Redundancy

• Distributed recovery block (DRB)
– One processor executes the PR while

the other executes the secondary
– If an error is detected in the primary

results, the results from the secondary
are immediate available

13

Dr. Xing 25

N-Version Programming (NVP)

• A direct software analog of NMR
• Software elements

– 3 or more independent versions of a software module
– A decision algorithm, usually a majority voting

mechanism
– Multiple versions can be executed sequentially on a

single processor or concurrently when sufficient
processing power is available

Dr. Xing 26

NVP (Cont’d)

• To develop independent versions
– Each version is designed and coded by

a separate group of programmers
– Each group works independently of

the others, and communication
between groups is not permitted except
by passing message (which can be
edited or blocked) via the contracting
organization

– Each group designs the software from
the same set of specifications /
requirements

– Each version is subjected to the same
set of comprehensive acceptance tests

14

Dr. Xing 27

NVP (Cont’d)

• Primary difficulties
– Software designers and programmers

can tend to make similar mistakes
• Identical misinterpretation of the

specifications
• Identical, incorrect designs for difficult

portions of the problem

– NVP cannot detect specification
mistakes

Dr. Xing 28

Real Applications of NVP

• Point switching, signal control, and traffic
control in the Goteborg area of the Swedish
State Railway

• Nuclear reactor control systems

• Space shuttle orbiter flight control system
(Shooman Ch 5.9.3 – Figure 5.19)
– Refer to extra note on the course website

for details

15

Space shuttle orbiter flight control system

• Five identical computers (Hardware A-E)
• Two different software systems (A, B)

– A developed by IBM Federal Systems Division
– B developed by Rockwell and draper Labs

• Primary Avionics Software System (PASS)
– Computers A-D, each using software A, are connected in a

voting arrangement
– Can sustain two failures (2-out-of-4 system): If one

computer fails, such computer is disconnected from the
voting arrangement, the remaining ones form a TMR system

– Vulnerable to common-mode software failures in Software A
• Backup Flight Control System (BFS)

Dr. Xing 29 Dr. Xing 30

N-Self-Checking Programming
(NSCP)

• 4 software versions and 4 hardware
components, grouped into two pairs

• Hardware pairs operate in hot standby
redundancy with each hardware
component supporting one software
version

• The four software versions are executed
and results of V1 and V2 are compared,
results of V3 and V4 are compared

16

Dr. Xing 31

General Structure of NSCP

• If either pair of results do not match, that pair is
discarded and only remaining pair is used

• If each pair of results matches, the results of the two
pairs are then compared

• A hardware fault causes the software version
running on it to produce incorrect results, as would
a fault in the software version itself!

• Homework
• ECE544 Project Proposal

– Check out the guidelines from course
website

– Due Wednesday, Oct. 5

Dr. Xing 32

Summary

• Five software redundancy
techniques are discussed:
– Consistency checks
– Capability checks
– Recovery blocks (RB)
– N-version programming (NVP)
– N-self-checking programming (NSCP)

Things to Do

