ECE544: Fault-Tolerant Computing \& Reliability Engineering

 (Fall 2022)
Homework \#2 Solution

 (45 points)1. How many check bits are needed if the Hamming correcting code is used to detect single bit errors in a 64-bit data word? (5 points)

Solution:

Need K check bits such that: $64+K \leq 2^{K}-1$.
The minimum value of K , which satisfies this condition, is 7 .
2. Develop an SEC code for a 16-bit data word. 1) Generate the code for the data word 0101000000111001 . 2) Show that the code will correctly identify an error in data bit D_{16}. (40 points)

Solution:

1) (30 points)

Step 1 (4 points): According to the inequality $2^{k}-1>=M+K$, where $M=16,5$ check bits are needed for an SEC code for 16-bit data words.

Step 2 (9 points): The layout of data bits and check bits:

Bit Position	Position Number	Check Bits	Data Bits
21	10101		D_{16}
20	10100		D_{15}
19	10011		D_{14}
18	10010		D_{13}
17	10001	C 16	D_{12}
16	10000		D_{11}
15	01111		D_{10}
14	01110		D_{9}
13	01101		D_{8}
12	01100		D_{7}
11	01011		D_{6}
10	01010		D_{5}
9	01001	C 8	
8	01000		D_{4}
7	00111		D_{3}
6	00110		

5	00101		D_{2}
4	00100	C 4	
3	00011	C 2	D_{1}
2	00010	C 1	
1	00001		

Step 3 (15 points): The check bits are calculated
$\mathrm{C} 1=\mathrm{D} 1 \oplus \mathrm{D} 2 \oplus \mathrm{D} 4 \oplus \mathrm{D} 5 \oplus \mathrm{D} 7 \oplus \mathrm{D} 9 \oplus \mathrm{D} 11 \oplus \mathrm{D} 12 \oplus \mathrm{D} 14 \oplus \mathrm{D} 16$
$\mathrm{C} 2=\mathrm{D} 1 \oplus \mathrm{D} 3 \oplus \mathrm{D} 4 \oplus \mathrm{D} 6 \oplus \mathrm{D} 7 \oplus \mathrm{D} 10 \oplus \mathrm{D} 11 \oplus \mathrm{D} 13 \oplus \mathrm{D} 14$
$\mathrm{C} 4=\mathrm{D} 2 \oplus \mathrm{D} 3 \oplus \mathrm{D} 4 \oplus \mathrm{D} 8 \oplus \mathrm{D} 9 \oplus \mathrm{D} 10 \oplus \mathrm{D} 11 \oplus \mathrm{D} 15 \oplus \mathrm{D} 16$
$\mathrm{C} 8=\mathrm{D} 5 \oplus \mathrm{D} 6 \oplus \mathrm{D} 7 \oplus \mathrm{D} 8 \oplus \mathrm{D} 9 \oplus \mathrm{D} 10 \oplus \mathrm{D} 11$
$\mathrm{C} 16=\mathrm{D} 12 \oplus \mathrm{D} 13 \oplus \mathrm{D} 14 \oplus \mathrm{D} 15 \oplus \mathrm{D} 16$
For the word $\mathrm{D}_{16} \mathrm{D}_{15} \mathrm{D}_{14} \ldots \mathrm{D}_{2} \mathrm{D}_{1}=\mathbf{0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1}$, the check bits are $\mathrm{C} 16=0 ; \mathrm{C} 8=0 ; \mathrm{C} 4=0 ; \mathrm{C} 2=0 ; \mathrm{C} 1=1$.

Step 4 (2 points): The code word is $\mathbf{0 1 0 1 0} \mathbf{0 0 0 0 0 1 1 0 1 0 0 0 1 0 1}$

2) (10 points)

If an error occurs in data bit D_{16}, the check bits become

$$
\mathrm{C} 16=1 ; \mathrm{C} 8=0 ; \mathrm{C} 4=1 ; \mathrm{C} 2=0 ; \mathrm{C} 1=0 .
$$

Comparing the two sets of check bits forms the syndrome word:

The result indicates an error identified in bit position 21, which is data bit D_{16}

