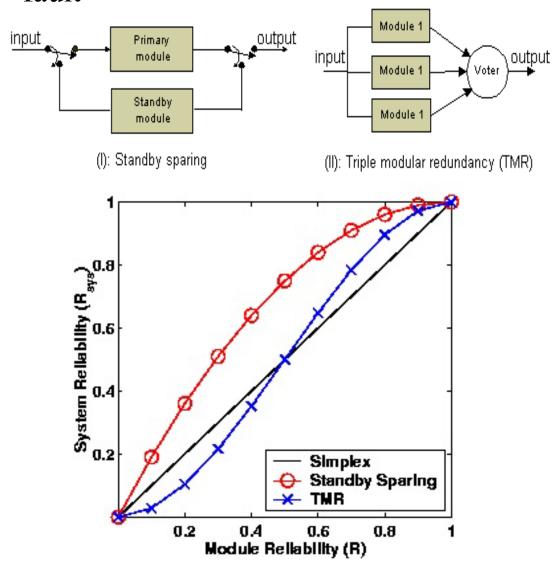
L#1 Review Questions (True/False)

1)	F A fault-tolerant system must have
ŕ	a high reliability
2)	T_ A highly reliable system is not
	necessarily fault-tolerant.
3)	T Reliability differs from availability
	in that reliability depends on an interval of
	time whereas availability is taken at an
	instant of time
4)	F_ A system's reliability is usually
	larger than a system's safety value
5)	F A TMR (triple modular
ŕ	redundancy) system is always more
	reliable than a simplex system without
	redundancy
6)	T_ A standby sparing design with one
	spare and perfect switching mechanism is
	always more reliable than a simplex
	system without redundancy

Dr. Xing

Reference (1)


- Reliability, R(t) -- The conditional probability that a system performs correctly throughout an interval of time [t₀, t], given that it was performing correctly at time t₀.
- Availability, A(t) the probability that a system is operating correctly at the instant of time t.
 - Depends not only on how frequently the system becomes inoperable but also on how quickly it can be repaired
- <u>Safety</u>, <u>S(t)</u> -- the probability that a system *either* performs correctly *or* discontinues its operations in a "safe" manner.

Reference (2)

A simplex system

• Two alternative designs for tolerating 1 fault

- Standby sparing is the most reliable
- When R > 0.5, TMR is better than simplex