
363 IEEE TRANSACTIONS ON RELIABILITY, VOL. 41, NO. 3, 1992 SEPTEMBER

Dynamic Fault-Tree Models for Fault-Tolerant Computer Systems

Joanne Bechta Dugan, Senior Member IEEE

Salvatore J. Bavuso

Mark A. Boyd, Member IEEE

Duke University, Durham

NASA Langley Research Center, Hampton

NASA Ames Research Center, Moffett Field

Key Words - Fault tree, Spare, Dynamic redundancy, Fault-
tolerant computer system, HARP

Reader Aids -
Purpose: Describe advanced fault-tree models
Special math needed for explanations: Fault trees and Markov

Special math needed to use results: None
Results useful to: Reliability analysts

chains

Abstract - Reliability analysis of fault-tolerant computer
systems for critical applications is complicated by several factors.
Systems designed to achieve high levels of reliability frequently
employ high levels of redundancy, dynamic redundancy manage-
ment, and complex fault & error recovery techniques. This paper
describes dynamic fault-tree modeling techniques for handling these
diffculties. Three advanced fault-tolerant computer systems are
described, viz, a fault-tolerant parallel processor, a mission avionics
system, and a fault-tolerant hypercube. Fault-tree models for their
analysis are presented. HARP (Hybrid Automated Reliability
Predictor) is a software package developed at Duke University and
NASA Langley Research Center that can solve those fault-tree
models.

1. INTRODUCTION

Several goals for the reliability analysis of fault-tolerant
computer systems for critical applications are:

predicting the reliability of the system for a specified mis-

facilitate tradeoff studies for various fault-tolerance

compare alternative architectures for a system still in the

sion time,

techniques,

design phase.

Even if a system exists only as a rough sketch on paper, tech-
niques can analyze parametric sensitivity in order to determine
which factors have the strongest impact on the reliability of the
system.

Fault trees are frequently used for reliability analysis of
critical systems. Fault-tree models are well accepted and solu-
tion methods are well known, but exact synthesis & analysis
of fault trees with many basic events is often expensive. Several
important types of dynamic behavior in advanced fault-tolerant
systems cannot be adequately captured in a standard fault-tree

model, eg , fault & error recovery, sequence-dependent failures,
and the use of spares. Markov models are an alternative that
is flexible enough to model nearly any such dynamic system.
Tools and techniques exist for solving even very large Markov
models. However, the construction of a Markov model for any
but the simplest system is tedious and error prone.

Dejnitions

Fault. An undesirable change in a hardware component
of the system, eg, a short circuit between two leads, or an open-
circuited transistor junction.

Error. The manifestation of a fault in the: a) information
that is processed by the computing system, orb) intemal system
state.

Failure. An unacceptable deviation from the anticipated
delivered-service.

Cold spare. An element that neither degrades nor fails
while it is a spare.

Hot spare. An element whose degradation & failure
behavior while it is a spare is the same as while it is active.

Warm spare. An element whose degradation & failure
behavior lies between a cold spare and a hot spare.

Acronyms

FEHM fault & error handling model
FORM fault occurrence & repair model (coverage model)
HARP hybrid automated reliability predictor 0

Fault-Tree Gate Symbols

[These symbols are for newly-introduced gates]
CSP cold spare
FDEP functional dependency
SEQ sequence enforcing U

To exploit the relative advantages of both fault trees and
Markov models, while avoiding many of the shortcomings, we
define a model that is flexible enough to capture the dynamic
aspects of the system, but which is (almost) as easy to use as
a usual fault-tree. The model construction and solution are
facilitated by the new model in the following three major ways;
they are defined and demonstrated via example in this paper.

1. B e h i o r a l decomposition is used to define models
separately for system structure and fault & error recovery. Us-
ing behavioral decomposition, the model is composed of fault
occurrence & repair (FORM) and fault & error handling
(FEHM) submodels [11. FORM contains information about the
structure of the system and the fault arrival process. FEHM
allows for the modeling of permanent, intermittent, and
transients, and models the on-line recovery procedure necessary
for each type.

0018-9529/92$03.00 01992 IEEE

364 IEEE TRANSACTIONS ON RELIABILITY, VOL. 41, NO. 3, 1992 SEPTEMBER

2. The fault-tree model of system structure is internally
and automatically converted to a Markov model [2], to which
is added the fault & error recovery information. All occurrences
of basic events that leave the system operational are enumerated;
each combination becomes a state in the Markov chain. The
advantage of allowing a fault-tree description of the system is
that the modeler need not perform the tedious task of detennin-
ing the Markov chain representation of a system that can be
described as a fault tree. Very often, a relatively simple fault-
tree can give rise to a very large and complicated state space
in the corresponding Markov chain. The modeler can use the
parsimony of the fault-tree representation of the system to
generate the state space of the Markov chain automatically, and
then adjust the Markov chain as needed.

3. Several additional gates are introduced into the fault-
tree model to capture dynamic behavior [3]. These new gates
are described in the next section, and their use is demonstrated
in the examples. 0

These techniques have been implemented in HARP (Hybrid
Automated Reliability Predictor) [4,5], a software package for
the analysis of advanced fault-tolerant systems, developed by
NASA Langley Research Center and Duke University. The
models in this paper are all solved using HARP.

Another type of dynamic behavior, not addressed in this
paper, is phased missions in which the configuration of com-
ponents required for system operation changes during the opera-
tion. Several authors have proposed methods for analyzing
phased-mission reliability; these methods include fault trees and
Markov models [6 - 91.

Assumptions

1. Faults are modeled as random, statistically independent
events.

2. The fault hazard rate (failure rate) of a component is
a constant.

3. Mission lengths are relatively short, so that the prob-
ability of more than a few component failures is low.

0

Systems which violate these assumptions can be handled by more
sophisticated techniques which fall outside the scope of this
paper.

4. The system is not repairable while in use.

2. DYNAMIC FAULT-TREE GATES

A major disadvantage of traditional fault-tree analysis is the
inability of usual fault-tree models to capture sequence dependen-
cies in the system and still allow an analytic solution. As an ex-
ample of a sequence-dependent failure, consider a system with
one active component and one standby spare connected with a
switch controller [lo]. If the switch controller fails after the ac-
tive unit fails (and thus the standby is already in use), then the
system can continue operation. However, if the switch controller
fails before the active unit fails, then the standby unit cannot be
switched into active operation and the system fails when the ac-

tive unit fails. Thus, the failure criteria depend not only on the
combinations of events, but also on their sequence.

Systems with various sequence dependencies are usually
Markov modeled. If, instead of using usual fault-tree solution
methods, the fault tree is converted to a Markov chain for solu-
tion, the expressive power of a fault tree can be expanded by
allowing some sequence dependencies to be modeled [1 11. There
are several kinds of sequence dependencies in fault-tolerant
systems. This section identifies several such dependencies, and
defines specific gates to express them in fault-tree models.
Subsequent sections demonstrate the use of these gate types.

2.1 Functional-Dependency Gate

Assumption

1. The system is configured such that the occurrence of
some trigger event causes other dependent components to
become inaccessible or unusable. Later faults in the dependent
components do not further affect the system and are not con-
sidered. 0

Non-dependent Output

Trigger event

Dependent Events

Figure 1. Functional-Dependency Gate

A functional dependency gate (see figure 1) has:

1 trigger-input (either a basic event or the output of another

a non-dependent output (reflecting the status of the trigger

0

The dependent basic events are functionally dependent on the
trigger event. When the trigger event occurs, the dependent
basic events are forced to occur. In the Markov-chain genera-
tion, when a state is generated in which the trigger event is
satisfied, all the associated dependent events are marked as hav-
ing occurred. The separate occurrence of any of the dependent
basic events has no effect on the trigger event.

gate in the tree),

event),
one or more dependent basic events.

Example

Communication is achieved through some network inter-
face elements, where the failure of the network element isolates
the connected components. The failure of the network element
is the trigger event and the connected components are the depen-
dent events.

DUGAN ET AL.: DYNAMIC FAULT-TREE MODELS FOR FAULT-TOLERANT COMPUTER SYSTEMS 365

2.2 Cold-Spare Gate

Systems with cold spares cannot be modeled exactly us-
ing usual fault-tree techniques because the system failure criteria
cannot be expressed in terms of combinations of basic events,
all using the same time frame.

We address this fault-tree deficiency by introducing a CSP
gate (see figure 2), with one primary input and one or more
alternate inputs. All inputs are basic events. The primary input
is the one that is initially powered on, and the alternate input@)
specify the (initially unpowered) components that are used as
replacements for the primary unit. The CSP gate has one out-
put which becomes true after all the input events occur.

Gate Output

t

Primary active unit ‘ Y t e r n a t e unit

1st alternate unit
2nd alternate unit

Figure 2. Cold-Spare Gate

The CSP gate can be used if spare units are shared be-
tween active processors. Then the basic event representing the
cold spare has inputs to more than one CSP gate. The spare
is available only to one of the CSP gates, depending on which
of the primary units fails first. The FTPP example below il-
lustrates the use of the CSP gate when one spare unit is available
for 3 active processors.

The conversion of the fault tree to a Markov chain allows
the consideration of cold spares. In a state where the primary
unit is operational, the cold spares do not fail. However, once
the primary unit has failed, then the first alternate unit can fail.
After the first alternate fails, the remaining alternates are allowed
to fail, one at a time in the order specified, until the spares are
exhausted. The possibility of being unable to reconfigure cor-
rectly the spare unit into operation is captured in the (separate-
ly specified) coverage model.

The functional dependency gate and the CSP gate can in-
teract in an interesting way. Let the spare units functionally-
depend on some other (otherwise unrelated) component. The
occurrence of the trigger event can render one or more of the
spares unusable, even if they have not been switched into ac-
tive operation. Then, if the primary unit fails, the spares are
unavailable to replace it. This is the only case where a cold spare
can “fail” while it is in the spare state.

2.3 Priority-AND Gate

The priority-AND gate is: an AND gate plus the condi-
tion that the events must occur in a specific order [18]. The

priority-AND gate (figure 3) has 2 inputs, A and B. The output
of the gate is true i f

both A & B have occurred, and
A occurred before B.

If both events have not occurred, or if B occurred before A then
the gate does not fire. To represent the behavior that A occurs
before B which occurs before C, the priority-AND gates can
be cascaded as shown in figure 4.

Output occurs only if
both A and B occur
and A occurs before B

A B

Figure 3. Priority-AND Gate

A before B before C
t

!v A B

Figure 4. Cascading Priority-AND Gates

2.4 Sequence-Enforcing Gate

The sequence-enforcing gate (figure 5) forces events to oc-
cur in a particular order. The input events are constrained to
occur in the left-to-right order in which they appear under the
gate (ie, the leftmost event must occur before the event on its
immediate right which must occur before the event on its im-
mediate right is allowed to occur, etc.). The sequence enforc-
ing gate can be contrasted with the priority-AND gate in that
the priority-AND gate detects whether events occur in a par-
ticular order (the events can occur in any order), whereas the
sequence enforcing gate allows the events to occur only in a
specified order.

In the generation of a Markov chain from a fault tree con-
taining a sequence-enforcing gate, the states that represent any
other ordering than that permitted by the sequence enforcing
gate are never generated. A later section shows an interesting
application of the sequence-enforcing gate to model pooled
spares.

366 IEEE TRANSACTIONS ON RELIABILITY, VOL. 41, NO. 3, 1992 SEPTEMBER

3. FAULT-TOLERANT PARALLEL PROCESSOR

Acronyms

FTPP fault-tolerant parallel processor
NE network element
PE processing element

Gate Output

I

Figure 5. Sequence-Enforcing Gate

Processing
elements

Network elements

U

Primary fault
containment
region -

Secondary
fault
containment
region

Figure 6. An Instance of the Fault-Tolerant Parallel Processor

3.1 System Description

We consider several models of the FTPP (Fault-tolerant
Parallel Processor) [12,131 cluster to compare various configura-
tions of triads with spares. Figure 6 is an instance of an FTPP
cluster that consists of 16 processing elements (PES), with 4
connected to each of 4 network elements (NEs). The NEs are
fully connected. In the clusters modeled here, the 16 PES are
logically connected to form 4 triads, each with one spare. We
investigate 3 tridspare configurations, #1& #2 with hot spares,
and #3 with cold spares:

1. Hot spares. There is one PE spare for each triad and
all spares are attached to the same NE.

2. Hot spares. There is one spare on each NE and the spare
PES can substitute for any failed PE attached to the same NE.

U

The PES in all three configurations functionally depend on
the NE to which they are connected. If a NE fails permanently,
the PES connected to it are then considered failed.

3. Cold spares. Otherwise the same as # l .

3.2 Failure Criteria & Parameters

For all models, a triad fails when it has fewer than 2 ac-
tive members; the system fails if any triad fails. For the pur-
pose of illustration, the constant failure rates are specified as:

PE . 1.1 x 10 -4/hour
NE. 0.17 x 10-4/hour

3.3 Fault Recovery

Assumptions for FTPP &le

[see section 3.51

1. Error detection and recovery & reconfiguration from
faults in PES always succeed, but are not instantaneous. The
system fails if a second (near-coincident) fault occurs in any
other component (PE or NE) during attempted recovery from
a first fault in a PE.

2. Half of the PE faults are transient, and can be recovered
from without discarding the affected PE. The remainder of faults
are permanent. The recovery hazard rate (from transient faults)
is constant at U3.6 seconds. Coverage of NE faults always suc-
ceeds, and is instantaneous.

3.4 Fault-Tree Models

3.4.1 Configuration #1

Notation

Tij
TSj spare for triadj.

Configuration #1 (figure 7) divides the active elements of
a triad among NE1, NE2, NE3, and uses the PES on NE4 as
spares. The PES that are in the same relative position on the
first 3 NEs form a triad, and the PE in the same relative posi-
tion on NE4 serves as a hot spare for the triad.

The fault-tree model for configuration #1 (figure 8) uses
4 functional-dependency gates (FDEP) to reflect the dependence
of the PES on the NEs. The FDEP gates are not explicitly con-
nected to the other gates in the tree, since the reliability re-
quirements (all 4 triads must be operational) do not explicitly
mention the NEs. Figure 8 shows four 3/4 gates connected to
the top OR gate, one 3/4 gate for each triad. A triad fails when
only 1 member PE remains (3 of the 4 PES in the triad have
failed).

member i of triad j

DUGAN ET AL. : DYNAMIC FAULT-TREE MODELS FOR FAULT-TOLERANT COMPUTER SYSTEMS 367

w
I NE3 I

Figure 7. Configuration #1 [One spare per triad] Figure 9. Configuration #2 [One spare per NE]

3.4.2 Configuration #2 The spare is not available if some other PE on the same NE
fails and uses the spare before it is needed by the first PE. For
example, in figure 10 the leftmost OR gate that inputs into the
leftmost 2/3 gate represents the failure of member #1 of triad
#1, which fails i f

Configuration #2 is an FTPP cluster with hot spares
distributed across the NEs instead of grouped on the same NE
(figure 9). The spare PE on each NE can substitute for any failed
PE connected to the same NE. That is, TSl is a PE that can

both Tl, & TSl fail, or
TSl is being used because another failure has already occur-
red when fails if

have failed before Tl does. This condition is reflected in the
Priority-AND gate that inputs to the same OR gate. 0

substitute for a failed PE connected to NE1.
Of this system ('!We lo) is more "-

plex than the one in section 3.4.1. The functional-dependency

A triad failure is again attributed to losing the majority of opera-
tional member PES, but it is more difficult to describe the failure
of a member of the triad. A member of the triad fails i f

The fault-tree

fails. Tsl is already in use when
gates 'DE' again reflect the dependence of the PES on the NES. either n2 or n3 (the other 2 active PES on the same NE)

it and its spare fail, or
its spare is not available when needed.

There is a similar structure of AND and Priority-AND gates
to represent the failure of the other members of the triads. 0

I

Figure 8. Fault-Tree Model for Configuration #1

368 IEEE TRANSACTIONS ON RELIABILITY, VOL. 41, NO. 3, 1992 SEPTEMBER

System Fai lure 5+
6 6 6 6

NE N E 2 + d 5 < NE^-+^-< ~~q-b--.<
Figure 10. Fault-Tree Model for Configuration #2

NE1

Figure 11. Fault-Tree model for Configuration #3
[One CSP per triad]

T

DUGAN ET AL.: DYNAMIC FAULT-TREE MODELS FOR FAULT-TOLERANT COMPUTER SYSTEMS 369

3.4.3 Configuration #3

Configuration #3 is used to investigate the effect on reliability
of keeping the spare PES unpowered until needed. The FTPP con-
figuration modeled in this section is the same as configuration
#1 (figure 7) except that the spare PES are cold rather than hot.
There is one spare PE for each triad, and all spare PES are con-
nected to the same NE. The fault-tree model for this system (figure
11) uses the CSP gate. There is 1 CSP gate for each member
of each triad, where the initially active members of the triad are
used as the primary inputs. The basic event representing the PE
which is a cold-spare is connected to all 3 CSP gates since it can
substitute for any of the PES. Once the cold-spare PE has been
activated to replace a failed triad-member it is unavailable to cover
any further failures in the triad.

3.5 Results
This section presents the results for the models of the 3

FTPP configurations for a mission length of 10 hours. Table
1 compares the unreliability of the 3 configurations. We solved
a truncated model (described in more detail later in this sec-
tion) which produces bounds on the unreliability from a partial
solution of the model. Table 1 shows the bounds on the
unreliability, and the best case (optimistic) estimate of the prob-
abilities of exhaustion of NEs (e h NE), exhaustion of PES (exh
PE) and near coincident faults (NCF).
Configuration #2 (hot spares are distributed across the NEs)
not only required a more complicated fault tree for analysis,
but also was appreciably less reliable than configuration #l. In
configuration #2,2 NE failures (alone) can kill the system, since
2 NE failures removes 2 members from at least 1 triad. For
example, if NE1 & NE2 both fail, then Tl, & T12 are both
disabled, and no spare is available to replace them (because of
the functional dependencies). The solution of the model for con-
figuration #2 shows that the predominant cause of failure is the
exhaustion of NEs. In configuration #1, the loss of 2 NEs (alone)
does not cause any triad to fail, even though it can render all
the spare PES unusable.

In configuration #3, the spare PES remained unpowered
until needed, resulting in a modest decrease in unreliability.
Since near-coincident faults contributed more highly to the
system unreliability, the effect of keeping the PES unpowered
was not as important as might be anticipated.

For all 3 models, the Markov chain was truncated after
considering 2 or 3 component failures, and so a pair of bounds
on the actual reliability were generated. The bounds were tight
enough after considering only 2 component failures for con-
figuration #2, but we needed to consider a larger model for the
other two configurations. The reason that the bounds were
tighter for configuration #2 is that there were an appreciable
number of failure states encountered when only considering 2
component failures. In configurations #1 & #3 there were not
many failure states with only 2 failed components. Unfortunate-
ly, the number of states in a Markov chain increases exponen-
tially with the number of component failures considered, so the
increase in accuracy is accompanied by a large increase in solu-
tion times. Table 2 compares the results obtained from the

TABLE 1
Results of the Solution of All 3 FTPP Models

[Body of table gives probabilities (lo-')]

#2: Hot #1: Hot #3 :
Configuration spare/NE sparehiad CSP/triad

(Best case) unreliability 20.7 4.06 2.64
(Worst case) unreliability 41.7 4.07 2.66

(Best case) exh. NE 17.4 0.135 0.104
(Best case) exh. PE 0.327 0.910 0.705
(Best case) NCF 3.02 3.02 1.83

TABLE 2
Comparison of Accuracy and Model Size

[Probability (1 0 -')I

#2: Hot #1: Hot #3 :
Configuration spare/NE sparehiad CSP/triad

Truncated at 2 component failures
(Best case) unreliability 20.7 4.06 2.63
(Worst case) unreliability 41.7 24.2 13.2
Number of states 20 1 123 225
Number of transitions 877 581 817
Runtime (CPU seconds) 138 99 99

Truncated at 3 component failures

(Worst case) unreliability analysis not 4.07 2.66
Number of states necessary for 961 2301
Number of transitions this example 5469 9771
Runtime (CPU seconds) 2653 5055

(Best case) unreliability 4.06 2.64

smaller model (truncated after 2 component failures) and the
larger model (truncated after 3 component failures), as well as
the size of the models and the run time for the complete genera-
tion and solution of the model on a DECstation 3100.

4. A MISSION AVIONICS SYSTEM

Acronyms

ASID Advanced System Integration Demonstration
MAS mission avionics system
VMS vehicle management system

4.1 System Description

The ASID project was the first large effort in the develop-
ment of the PAVE PILLAR architecture for advanced tactical
fighters. The Boeing Military Airplane Company was one of
five contractors who designed implementations of the PAVE
PILLAR project. A unique feature of the Boeing implementa-
tion [14] is the use of dual processor pairs wherever a single
processor is required. This processor-pair uses comparison
monitoring to achieve very high levels of error detection. For

370 IEEE TRANSACTIONS ON RELIABILITY, VOL. 41, NO. 3, 1992 SEPTEMBER

critical functions, high levels of reliability are assured by us-
ing redundant processor-pairs in duplex or triplex mode. We
analyze the reliability of the critical functions of the mission
avionics subsystem of the ASID.

There are several critical functions within the MAS. The
loss of any of these functions causes the system to fail. These
critical functions include:

the VMS,
the crew station: control & display functions,
mission & system management,
local path generation,

* scene & obstacle following.

The VMS provides: a) airframe control, including flight and

an error. Each of the processing units is a pair of tightly coupled
processors - to maximize the probability of error detection and
minimize latency. Although there are 4 active processors for
each of these functions, we treat the processor-pairs as a single
processing unit, since they are not used independently. When
a mismatch of results is detected, both members of the process-
ing pair are removed from the system. Figure 12 thus shows
that there are 2 processing units for these functions - the
primary unit, and a hot spare.

The “scene & obstacle following” and VMS both require
more functionality than one processing unit can provide, and
thus each use 2 processing units. The “scene & obstacle follow-
ing” processing units are also replicated, providing a hot spare.
The VMS is triplicated, thus providing 2 hot spares.

propulsion control, and b) utility system management & con-
trol. The crew station displays information to the pilot, con-
tains mechanisms for pilot control actions, and manages crew
station activity. The mission & system management allocates
resources for real-time control functions.

Figure 12 is a block diagram of the architecture of the
critical MAS. One processing unit each is required for: a) the
crew station, b) local path generation, and c) mission & system
management. Each of these processing units is supplied with
a hot spare to take over control if the primary processor detects

In addition to the hot spares, 2 additional pools of spares
are provided, each containing 2 spare processing units. Pool#l
covers the first 2 processor failures in the subsystems other than
the VMS; pool#2 covers the first 2 processor failures in the
VMS.

The subsystems are c o ~ e c t e d via 2 triplicated bus systems:
#1 is a data bus, #2 is the mission-management bus. The
replicated memory-system is connected to the data bus. The
VMS has an additional triplicated bus, the vehicle-management
bus.

BACKGROUND
DATA
BUS

rllSSlON
n ANAGEnENT
BUS

Figure 12. Block Diagram of Mission Avionics System Architecture

DUGAN ET AL.: DYNAMIC FAULT-TREE MODELS FOR FAULT-TOLERANT COMPUTER SYSTEMS 37 1

I CRITICAL SYSTEM FAILURE 1

vfls I I f
I I

Figure 13. Fault-Tree Model of Mission Avionics System
[No pooled spares]

4.2 Failure Criteria & Parameters

The system fails i f

any of the functions cannot be performed, or
both of the 2 memories fail, or
all 3 of any one type of bus fail.

There are 3 types of components: processing units (type l) ,
buses (type 2) and memories (type 3). The crew station, for
example, uses 2 components of type 1 , so its basic event is
labeled 2’ 1. The memory system uses 2 memories and is thus
labeled 2*3, while the mission-management bus system uses
3 buses and is labeled 3*2.

The following constant failure rates (10-6/hour) were used. 4.4.2 Modeling Pooled Spares

Before we add the pooled spares to the MAS fault-tree
model, consider a simple system with two duplexes and 2 pooled
spares. This simple system represents the “scene & obstacle
following”. Figure 14 shows the fault-tree model of a 2 duplex
system; figure 15 shows the equivalent Markov chain. This
equivalent Markov chain is determined automatidly by HARP.

processor pairs 25
buses . 2.5
memories . 1 .O

4.3 Error & Fault Recovery

Error detection is perfect (because of the processing pairs)
but it takes between 0.5 second and 5 seconds (uniformly
distributed) for recovery to occur. If a second, near-coincident
fault occurs during this interval, the system fails.

4.4 Fault- Tree Model

The fault-tree model of the MAS is complicated by the
presence of the pooled spares. For ease of exposition, we first
present a fault-tree model that ignores the pooled spares. We
then describe the methodology for modeling pooled spares via
a fault tree with sequence-dependency gates, by way of a sim-
ple example. Finally, we define the full fault-tree model of the
MAS including the pooled spares.

4.4.1 Fault tree with no pooled spares

Figure 13 is the fault-tree model of the MAS with no pooled
spares. This fault tree shows that the system fails i f

any of the critical functions fail, or
either of the bus systems fail, or
both memories fail. System

Figure 14. Fault-Tree
Model of a
2-Duplex

Figure 15. Markov-Chain
Model of a
2-Duplex
System

312 IEEE TRANSACTIONS ON RELIABILITY, VOL. 41, NO. 3, 1992 SEPTEMBER

Figure 17. Fault-Tree Model of a 2-Duplex System with 2 Pool-
ed Spares

Figure 16. Markov-Chain Model of a 2-Duplex System with 2
Pooled Spares

Next, consider the desired Markov chain representation
of the same 2duplex system with the addition of 2 pooled spares
(figure 16). The 2 pooled spares cause 2 states to be added to
the front of the Markov chain. These 2 states represent the first
2 failures in the system, which deplete the spares. After the first
2 failures, 2 functioning duplexes remain, and the rest of the
Markov chain in figure 16 is identical to that in figure 15.

We can use the fault tree in figure 17 to represent the
2-duplex system with 2 pooled spares. In figure 17, the com-
bination of a) the 2/6 gate (which fires after the first 2 of 6
failures), and b) the FDEP gate, creates a Markov chain that
models the first 2 failures of 6 components. After the first 2

failures, the FDEP gate stops any more of the 6 components
from failing. The two SEQ gates in figure 17 do not allow the
two basic events labeled with 1 *2 to begin to fail until after the
2/6 gate has fired. After the 2/6 gate has fired, then the rest
of the fault tree (identical to the one in figure 14) can occur
as usual. In this rather unusual use of the FDEP & SEQ gates,
the outputs of these gates are not connected to the top event
in the fault tree because the condition associated with the out-
puts are not explicitly needed to determine system failure. This
combination of FDEP & SEQ gates can be used in a more
general setting to tie multiple Markov chains together.

I CRITICAL SYSTEM FAILURE I

Figure 18. Full Fault-Tree Model of Mission Avionics System

-

DUGAN ET AL.: DYNAMIC FAULT-TREE MODELS FOR FAULT-TOLERANT COMPUTER SYSTEMS 373

4.4.3 Full Model and Results

Figure 18 is the full fault-tree model of the MAS including
the pools of spares. The leftmost FDEP & SEQ gates show
the 2 spares for the VMS while those to the right represent the
other 2 spares.

Because of the sequence-dependency gates, this fault tree
cannot be solved by usual combinatorial methods, but rather
must be converted to a Markov chain for solution. HARP per-
forms this conversion automatically, and produces a truncated
Markov chain with 479 states and 2517 transitions. The Markov
model is truncated after considering 5 component failures. In-
stead of producing an exact solution of the model, bounds that
encompass the reliability of the full model are produced. For
a 200 hour interval, the unreliability lies between 1 . 1 3 8 ~
and 1 . 1 4 6 ~ 1 0 - ~ .

5. 3 FAULT-TOLERANT HYPERCUBE
ARCHITECTURES

We next model three fault-tolerant hypercube architectures.
All three contain 8 processing nodes connected in a hypercube
of dimension 3. All three consist of 2 fault-tolerant modules
with each module containing 4 processing nodes. The three ar-
chitectures differ in -

the ways that spare nodes are incorporated into the fault-

the way that messages are routed between processing nodes,
the architecture of the individual processing nodes.

tolerant modules,

5.1 System Description

5.1.1 Architecture 1

Architecture 1 is based on the hierarchical approach to
sparing proposed by Rennels [15] and is depicted in figure 19.
It consists of 2 fault-tolerant modules of processing nodes. Each
module contains 4 processing nodes and one hot spare node.
The spare is connected by a port to each of the 4 active pro-
cessors in the module.

Node:

Bu

Figure 19. Architecture 1 [15]

The processing nodes themselves are comprised of 5 in-
dividual processors (4 active processors and a spare) which com-
municate over a bus and share a memory module. The memory
module contains spare bit-planes and spare chips within a bit
plane. The processing node is connected to its neighboring nodes
in the hypercube by 4 ports. Three ports communicate across

the 3 dimensions of the hypercube, and port#4 communicates
with the spare processing node of the module. Messages can
be routed through the spare within the module in the event that
a direct connection between two active nodes has failed - even
if the spare has not been used to replace any failed processing
nodes within the module. The spare therefore provides redun-
dancy for connections as well as for processing nodes.

5.1.2 Architecture 2

Architecture 2, also depicted in figure 19, is identical to
Architecture 1 except that the ports within each processing node
are replaced by hyperswitch ports [16]. The hyperswitch allows
an adaptive routing method to avoid failed or congested links
within the hypercube. It permits any 2 nodes of the hypercube
to communicate as long as there exists any nonfailed path be-
tween them anywhere throughout the hypercube. Architecture
2 also allows messages to be routed through the spare.

5.1.3 Architecture 3

Acronym

DMA direct memory access

Architecture 3 [171, depicted in figure 20, again configures
processing nodes into 2 fault-tolerant modules (each contain-
ing 4 active processing nodes and one spare). It differs from
Architectures 1 & 2 in several important ways:

The inter-node connections are mediated by decoupling
switches rather than being direct connections between ports
of neighboring nodes.
The hypercube connectivity and the switching of spares online
and failed nodes offline is performed using these decoupling
switches [171. The switches are intended to be comparative-
ly simple devices. One consequence of using the switches to
control access to the spare nodes is that the spares cannot pro-
vide redundancy for links as was possible for architectures
1 and 2.

Figure 20. Architecture 3 [17]

374 IEEE TRANSACTIONS ON RELIABILITY, VOL. 41, NO. 3, 1992 SEPTEMBER

The processing nodes of the hypercube are much simpler and
contain processors that are much less powerful that those of
Architectures 1 and 2. Each processing node consists of 2
processors which perform identical computations in parallel.
The output is compared to detect faults. A recovery module
is responsible for fault handling upon the detection of a pro-
cessor fault. The node may either declare itself failed or at-
tempt a reconfiguration to a simplex configuration upon detec-
tion of such a processor fault. Both processors have access
to a single memory module and a DMA module.
Each processing node communicates with the outside world
through three ports, each of which connects the node to its

0 neighbor across one dimension of the hypercube.

For this discussion we examine only the processing nodes
of the various candidate architectures in isolation from the ensem-
ble. The processing nodes of each architecture themselves can be
configured in a variety of ways. The configuration can affect the
reliability and power consumption of the node, which can in turn
affect the ensemble reliability of the hypercube multiprocessor.
The analysis in [2] considers the complete architectures.

5.2 Failure Criteria & Parameters

The processor nodes for Architectures 1 & 2 are identical,
so their failure criteria are closely related. The difference be-
tween them is due to the message-routing scheme in each ar-
chitecture. A processor node for the two architectures fails i f

the memory fails, or
the bus fails, or
2 out of the 5 processors fail (recovery from the first pro-
cessor failure is achieved by switching in the spare to take
the failed processor’s place), or
the node is disconnected from the other processing nodes in
the hypercube. 0

The events that cause a node to be disconnected differ for the
two architectures.

The routing algorithm used for Architecture 1 allows on-
ly one path between each pair of nodes in the hypercube.
However, since the spare processing node in each of the 2 fault-
tolerant modules can relay messages within the module when
a direct connection between 2 nodes in the module is not possi-
ble, it takes the failure of 2 of the 4 ports in a processing node
to disconnect the node. In Architecture 2, a hyperswitch is used
instead of the single path routing algorithm, so that all 4 ports
in a node must fail in order to disconnect the node.

A processing node for Architecture 3 fails i f

the memory fails, or
the DMA module fails, or
both processors fail, or
any of its 3 ports fail (since the single path routing algorithm

U

The component failure rates (10M6/hour) for all three ar-

is used for this architecture).

chitectures are:

5.3

Active processor (Architectures 1 and 2) . . 1.990
Active processor (Architecture 3) 0.2306
Warm spare processor(Architecture 2) 1.0
Shared Memory (Architectures 1 and 2) . . . 0.3477
Memory (Architecture 3) 0.1147
DMA module (Architecture 3) 0.3477
Intra-node bus(Architectures 1 and 2) 0.1147
Hyperswitch and I/O port (all architectures) 0.3477

Fault Recovery

Assumptions for the Hypercube Example

A processor error can be detected, the underlying fault
located, and the spare successfully switched-in to replace the
failed processor 95% of the time. The time required to do
all of this is uniformly distributed between 0.9 seconds and
1.1 seconds. The remaining 5 % of the time, the recovery does
not succeed, leading to node failure.
Detection & deactivation of a faulty port is successful 98%
percent of the time. The time required for this is exponen-
tially distributed with a mean of 0.1 sec. The remaining 2%
of the time, a port error is not successfully detected, leading
to node failure.
No transient restoration is attempted, ie, all faults are con-
sidered to be permanent.

5.4 Fault-Tree Models

5.4.1 Hot spares

Figures 2 1 & 22 model the processing nodes in Architec-
tures 1 & 2 when the spare processor in the node is a hot spare.
The fault trees differ only in the modeling of port failures:

Architecture 1 fails when 2 of the 4 ports fail (hence the 2/4

Architecture 2 doesn’t fail until all 4 ports have failed (hence
the AND gate).

gate) 3

Node fails 7
Figure 21. Fault-Tree Model of Architecture I Processing Node

with Hot Spares

DUGAN ET AL. DYNAMIC FAULT-TREE MODELS FOR FAULT-TOLERANT COMPUTER SYSTEMS 315

Node fails K
(=)(4'port)

Figure 22. Fault-Tree Model of Architecture 2 Processing Node
with Hot Spares

Figure 23 is a fault-tree model for the processing nodes of Ar-
chitecture 3.

&A 2'proc S'port

Figure 23. Fault-Tree Model of Architecture 3 Processing Node
with Hot Spares

5.4.2 Cold spares

Power consumption by a multiprocessor with spare nodes
can be reduced by having the spares unpowered until they are
needed to replace a failed active processor; such spares are
modeled here as cold spares. In HARP this type of configura-
tion is modeled using the CSP gate, as depicted in figure 24
by a fault tree for Architecture 2. The CSP gate ensures that
the spare processor does not fail until one of the 4 active pro-
cessors fails. The 2/5 gate in parallel with the CSP gate main-
tains the requirement that 2 processor failures cause the node
to fail. Such a configuration not only reduces power consump-
tion, but enhances the reliability of the processing node.

5.4.3 Warm spares

Instead of being unpowered, the spare may be partially
powered; such spares are modeled here as warm spares. The warm
spare is modeled in HARP using the SEQ gate as shown in figure
25 for Architecture 2. In this example two basic event nodes ap-
pearing as inputs to the OR gate whose output feeds into the
functionaldependency gate are used to represent the 4 active pro-
cessors and spare before any processor failures. Upon the first

Node fails T

Figure 24. Fault-Tree Model of Architecture 2 Processing Node
[Cold spares]

Node fails LTJ

(= =)
I

Figure 25. Fault-Tree Model of Architecture 2 Processing Node
[Warm spares]

failure of a processor (either active or spare), these two basic
events are tumed off, as far as the fault tree is concerned, by the
FDEP gate. The 4 remaining processors, now all active, are
represented by the 4*processor basic event which appears as the
rightmost input to the sequencedependency gate. This basic event
had been tumed off prior to the first processor failure by the
sequence-enforcing gate. After the first processor failure, the left-
most input to the sequence-enforcing gate is turned on, which tum
on the basic event that is its rightmost input (ie, the processors
of this basic event are now permitted to fail). Because this basic
event is also an input to the top OR gate of the fault tree, a subse-
quent failure of any of the 4 processors causes the node to fail,
again maintaining the requirement that failure of 2 of the 5 pro-
cessors cause node failure.

376 IEEE TRANSACTIONS ON RELIABILITY, VOL. 41, NO. 3, 1992 SEPTEMBER

5.5 Results ACKNOWLEDGMENT

Figure 26 compares the 10-year unreliabilities of the pro-
cessing nodes of each architecture, assuming all of them use
hot spares. The unreliability of Architecture-3 processing nodes
is much lower that those for Architectures 1 & 2, reflecting that:
a) the reliability of individual Architecture-3 processors is much
greater than that of the others, and b) there are only 2 that can
fail instead of 5 . As anticipated, the unreliability for Archi-
tecture-2 nodes is slightly better than the unreliability for
Architecture-1 nodes because of the number of port failures re-
quired to cause a node failure.

This work was supported in part by US NASA Ames Con-
sortium Agreement NCM-617 and by US NASA Langley grant
NAG-1-70.

REFERENCES

Arch1 -’&
Arch2 4-
Arch3 a

.15

.25

.2

.15

.1

0.05

0
0 1 2 3 4 5 6 7 8 9 10

Miasion Time (years)

Figure 26. Comparison of Node Unreliabilities of All Architec-
tures [Hot spares]

Figure 27 shows the 10-year unreliabilities for
Architecture-2 processing nodes using hot, warm, and cold
spares. In general, the reliability increases from configuration
to configuration in that order. This is to be anticipated since
the failure rate of the spare during its inactive period decreases
in that order.

.25 I I I I 1 I I I I

.2

.15

.1

0.05

n
- 0 1 2 3 4 5 6 7 8 9 10

Mission Time (years)

Figure 27. Unreliability of Architecture-2 Processing Nodes
[various types of spares]

[I] J. B. Dugan, K. S. Trivedi, “Coverage modeling for dependability analysis
of fault-tolerant systems”, IEEE Trans. Computers, vol 38, 1989 Jun,

121 M. A. Boyd, J. Tuazon, “Fault tree models for fault tolerant hypercube
multiprocessors”, Proc. Reliability & Maintainability Symp, 1991 Jan,

[3] J. B. Dugan, S. J. Bavuso, M. Boyd, “Fault trees and sequence dependen-
cies”, Proc. Reliability & Maintainability Symp, 1990 Jan, pp 286-293.

[4] J. B. Dugan, K. S. Trivedi, M. K. Smotherman, R. M. Gist , “The hybrid
automated reliability predictor”, AIAA J. Guidance, Control & Dynamics,
vol 9, 1986 May-Jun, pp 319-331.

[5] S. J. Bavuso, J. B. Dugan, K. S. Trivedi, E. M. Rothmann, et al.
‘‘Analysis of typical fault-tolerant architectures using HARP”, IEEE Trans.
Reliability, vol R-36, 1987 Jun, pp 176-185.

[6] J. D. Esary, H. Ziehms, “Reliability analysis of phased missions”,
Reliability and Fault Tree Analysis: Theoretical and Applied Aspects of
System Reliability and Safety Assessment, (Barlow, Fussell, Singpurwalla,

[7] B. Moret, M. Thomason, “Boolean difference techniques for time-
sequence and common-cause analysis of fault trees”, IEEE Trans. Reliabili-

[8] M. K. Smotherman, K. Zemoudeh, “A non-homogeneous Markov model
for phased mission reliability analysis”, IEEE Trans. Reliability, vol38,

[9] J. B. Dugan, “Fault trees and imperfect coverage”, IEEE Trans Reliability,
vol 38, 1989 Jun, pp 177-185.

[lo] E. J. Henley, H. Kumamoto, Reliability Engineering and Risk Assess-
ment, 1981; Prentice-Hall.

[l 11 M. A. Boyd, Dyruunic Fault Tree Models: Techniques for Analysis of Ad-
vanced Fault Tolerant Computer System, PhD Thesis, 1991 Apr; Dept
of Computer Science, Duke University.

[12] R. E. Harper, J. H. Lala, J. J. Deyst, “Fault tolerant parallel processor
architecture overview”, Proc. 18“ Symp. Fault Tolerant Computing,

[13] R. E. Harper, “Reliability analysis of parallel processing systems”, Proc.
81h Digital Avionics Systems Conf, 1988; pp 213-219.

[14] S. W. Behnen, W. A. Whitehouse, R. J. Farrell, F. M. Leahy, et al,
“Advanced system integration demonstrations (ASID) system definition”,
Tech. Rep, 1984; USAF Wright Aeronautical Laboratories.

[15] D. A. Rennels, “On implementing fault-tolerance in binary hypercubes”,
Proc. IEEE Int ‘1 Symp. Fault-Tolerant Computing, FTCS-16, 1986 Jul,

[16] E. Chow, J. Peterson, H. Madan, “Hyperswitch network for the hyper-
cube computer”, Digest 131h Symp. Computer Architecture, 1988 May,

[17] S. C. Chau, A. Liestman, “Proposal for a fault-tolerant binary hyper-
cube architecture”, Proc. IEEE Int ’1 Symp. Fault-Tolerant Computing,
FTCS-19, 1989 Jun, pp 323-330.

[18] J. B. Fussell, E. F. Aber, R. G. Rahl, “On the quantitative analysis of
priority-AND failure logic”, IEEE Trans. Reliability, vol R-25, 1976 Dec,

pp 775-787.

pp 610-614.

MIS), 1975, pp 213-236; SIAM.

ty, VOI R-33, 1984 Dw, pp 399-405.

1989 Dm, pp 585-590.

1988, pp 252-257.

pp 344-349.

pp 90-99.

pp 324-326.

DUGAN ET AL.: DYNAMIC FAULT-TREE MODELS FOR FAULT-TOLERANT COMPUTER SYSTEMS 377

AUTHORS

Dr. Joanne Bechta Dugan; Department of Computer Science; Duke Universi-
ty; Durham, North Carolina 27706 USA.

Joanne Bechta Dugan: For biography see ZEEE Trans. Reliability, vol
40, 1991 Apr, p 55.

Salvatore J. Bavuso; MS 478; NASA Langley Research Center; Hampton,
Virginia 23665 USA.

Salvatore J. Bavuso is a senior researcher at NASA Langley Research
Center in Hampton, Virginia. He received the BS in Mathematics from Florida
State University in 1964 and the MS in Applied Mathematics f” North Carolina
State University at Raleigh in 1971. He has been instrumental in the develop-
ment of advanced reliability modeling technology for over a decade and is the
NASA project manager for the HARP and CARE III programs.

Mark A. Boyd; MS 269-3; NASA Ames Research Center; Moffett Field,
California 94035 USA.

Mark A. Boyd was born in Pennsylvania in 1957. He was awarded a
BA in Chemistry from Duke University in 1979, an MA in Computer Science
and a PhD in Computer Science from Duke University in 1986 & 1991. He
is a Computer Engineer in the Information Sciences Division at NASA Ames
Research Center. His research interests include mathematical modeling of fault
tolerant computing systems and parallel processing. He is a member of the IEEE
and the ACM.

Manuscript TR91-056 received 1991 April 10; revised 1991 November 15.

IEEE Log Number 06064 4TRF

Annual Reliability and Maintainability Symposium

The P. K . McElroy Award for Best Paper
was bestowed on Charles H. Stapper, John A. Fifield, and Howard L. Kalter for their
paper “ High-Reliability Fault-Tolerant 16-Mbit Memory Chip’ ’ that was given at the
1991 Symposium in Orlando. For more information, see the gold section of your copy
of the 1992 Proceedings.

Each year the Symposium presents The P. K. McElroy Award for the bestpaper at the previous
Symposium. The Award consists of a plaque and a $1000 honorarium. There are two criteria
for best paper:

The content of the written paper is lucid, excellent, and important to the theory andlor practice

The verbal presentation of the paper at the Symposium is likewise lucid and excellent.

P. K. McElroy was an intensely practical person. Papers that receive the Award must be able
to make a difference to R&M engineers and/or managers. I t is not enough that the content be
competent and important; that competence and importance must be readily obvious in both the
written and verbal presentations.

Before the Symposium, the content of each written paper is examined by the Program Committee
for technical excellence and clarity of exposition. The best of the papers are chosen and referred
to a select group of past General Chair’n of the Symposium. Each person in that group listens
to each presentation, and that group choses the best paper to receive the P. K. McElroy Award.

of R&M engineering.

