2. A component with time to failure T has failure rate $z(t)=2.0^{*} 10^{-6} t /$ hour for $t>0$
a. Determine the probability that the component survives 200 hours
b. Determine the probability that a component, which is functioning after 200 hours, is still functioning after 400 hours
Note that the failure rate in this problem is not constant, but a function of time t.
a.

Given $z(t)=2.0 \times 10^{-6} t$,

$$
\begin{aligned}
\text { Given } z(t) & =2,0 \times 10^{-6 t}, \\
\therefore \quad R(t=200) & =e^{-\int_{0}^{t} z(u) d u}=e^{-\int_{0}^{200} k u d d}=e^{-k \times\left.\frac{u^{2}}{2}\right|_{0} ^{200}:}\left(k=2 \times 10^{-6}\right\rangle \\
& =e^{-k \times 2 \times 10^{4}}=e^{-2 \times 10^{-6} \times 2 \times 10^{4}}=e^{-4 \times 10^{-2}} \quad 2.0 .08
\end{aligned}
$$

b.

$$
\therefore \quad P_{T}\{T>400 \mid T>100\}=\frac{P_{r}\{T>400, T>200\}}{P_{r}\{T>200\}}=\frac{P_{r}\{T>400\}}{P_{r}\{T>200\}}
$$

$$
\begin{aligned}
& =\frac{R(400)}{R(200)} \\
& R(t)=e^{-f_{0}^{t} z(u) d u}=e^{-\int_{0}^{t} k u d u}=e^{-k \times \frac{t^{2}}{2}}=e^{-10^{-6} t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& R(t)=e^{2}=e^{-10^{6} \times 400^{2}}=e^{-0.16} . \\
& \therefore R(400)=e^{-10004 \times 200^{2}}=e^{-0.16}
\end{aligned}
$$

For your reference: the MTTF is:

$$
\begin{aligned}
M T T F & =\int_{0}^{\infty} R(t) d t=\int_{0}^{\infty} e^{-\int_{0}^{t} \dot{z}(u) d u} d t \\
& =\int_{0}^{\infty} e^{-\int_{0}^{t} k u d u} \int_{0}^{\infty} e^{-k+\frac{t^{2}}{x}} d t \\
& =\int_{0}^{\infty} e^{-10^{-6} \times t^{2}} d t
\end{aligned}
$$

