ECE544 Fault-Tolerant Computing \& Reliability Engineering Midterm Exam Sample Questions (Fall 2022)

1. Considers the following two competing fault-tolerant designs that can tolerate 1 fault:

Design \#1 (2-out-of-3: G system): consists of three identical components working concurrently; the system is Good (i.e., functioning) if 2 or more out of the three components are working correctly.

Design \#2 (3-out-of-4: G system): consists of four identical components working concurrently; the system is functioning if three or more out of the four components are working correctly.
Assume all components used in the two designs have a fixed reliability of $p=0.7$ for a prescribed time. Which design is more reliable? Please justify your answer by computing the reliability of each design.
2. For a 4-bit data word $(\mathrm{d} 0, \mathrm{~d} 1, \mathrm{~d} 2, \mathrm{~d} 3)=(0111)$, determine
a). if the word ($\mathrm{v} 0, \mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4, \mathrm{v} 5, \mathrm{v} 6)=(0100011)$ is its valid non-separable $(7,4)$ cyclic code word with the generator polynomial being $G(X)=1+x+x^{3}$. Justify your answer.
b). if the word ($\mathrm{v} 0, \mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4, \mathrm{v} 5, \mathrm{v} 6)=(0110011)$ is its valid Hamming SEC code word or not. Justify your answer.
3. A bulb with an exponential time-to-failure distribution has the mean time to failure of 10000 hours.
a). Determine the failure rate of the bulb.
b). Find the probability that the bulb will survive its MTTF in continuous operation.
c). Determine the probability that the bulb will fail within 15000 hours, when you know that the bulb was functioning at 5000 hours.
d). Find the mean residual life (MRL) of the bulb at age $t=70000$ hours.
4. Consider a Triple Module Redundancy (TMR) system as shown in the following figure. Suppose all the three modules fail independently and exponentially with the same constant failure rate $\lambda=0.0001$ /hour. The voter fails with the fixed probability of 0.001 .
a). Show the fault tree model of this TMR system.
b). Find all the minimal cut sets.
c). Find the system unreliability for time $t=1000$ hours

Note: for simplicity, you may use M1, M2, M3, and V to denote the three modules and the voter in your answers.
5. (Hands-on problem on Slide 35, Lecture \#9) Consider the fault tree below modeling the failure of a system. Assume the occurrence probabilities of basic events are: $\operatorname{Pr}(\mathrm{E} 1)=0.1, \operatorname{Pr}(\mathrm{E} 2)=0.05, \operatorname{Pr}(\mathrm{E} 3)=0.01, \operatorname{Pr}(\mathrm{E} 4)=0.02$. Determine the system failure probability.

