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SUMMARY & CONCLUSIONS 
 

In this paper we investigate and compare a set of existing 
component importance measures and select the most 
informative and appropriate one for guiding the maintenance 
of the system. Efficient methods to compute the selected 
measure are presented. An important concern in the traditional 
fault tree reliability analysis, common-cause failure, is also 
addressed in the component importance analysis using the 
selected measure.  A simple example is designed and analyzed 
to show the selection process.    

 
1.  INTRODUCTION 

 
Reliability analysis is a key component in the design, 

analysis, and tuning of computer-based systems. However, 
reliability analysis tells only part of the story. Follow-up 
questions such as “How does a change in one component 
affect the entire system?”, “Given limited resources such as a 
fixed engineering budget, how can the entire system reliability 
be best improved?” have to be answered. These and similar 
questions are best answered using the results of importance 
analysis (also called sensitivity analysis, Ref. 1), which is 
referred to as improvement-oriented importance analysis (IO-
IA) in this paper.  The IO-IA helps identify which components 
contribute most to the system reliability and thus they will be 
good candidates for efforts leading to improving system 
reliability. For this purpose, various ways of defining such 
component importance have been proposed. A summary of 
them can be found in Ref. 2. In this paper, we consider 
another application of component importance analysis, that is, 
in the assistance of the system maintenance. For example, the 
measure would, by means of a list, tell the repairperson in 
which order to check the component that may have caused the 
system failure. Ideally speaking, the maintenance-oriented 
importance analysis (MO-IA) will rank the component whose 
repair will hasten the system recovery the most, the highest. 
Due to the different purposes between the IO-IA and MO-IA, 
it is not feasible to apply directly the existing measures for IO-
IA to perform the MO-IA. Therefore, one main task of this 
paper is to investigate and compare the existing importance 
measures, and then select the most informative and 
appropriate measure to perform the importance analysis for 
assisting system maintenance. Further, we explore efficient 
approaches to evaluate the resulted measure, considering the 
systems in the presence of common cause failures. 

The paper is organized as follows. First we briefly review 
the mathematical definitions of the importance measures we 
consider in this paper. In section 3, we present an illustrating 
example system, which is designed to show the semantics of 

the importance measures of interest and the selection process. 
In section 4, we study and compare the experimental results 
generated from the interested measures and propose the most 
appropriate one for guiding system maintenance. In section 5, 
we present the basic algorithms to assess the selected measure. 
Finally, the method for incorporating the common-cause 
failures into the MO-IA using the selected measure is 
presented in section 6.  
 
1.1 Acronyms 
 

BDD    Binary Decision Diagram 
BM    Birnbaum’s Measure 
CC    Common Cause 
CCE    Common-Cause Event 
CCF    Common-Cause Failure 
CIF    Criticality Importance Factor 
CP    Conditional Probability 
DIF    Diagnostic Importance Factor 
IO-IA    Improvement-Oriented Importance Analysis 
IP    Improvement Potential 
MO-IA    Maintenance-Oriented Importance Analysis 
RAW    Risk Achievement Worth 
RI    Reliability Importance 
RRW     Risk Reduction Worth 
SI    Structure Importance 

 
1.2 Notations 
 

e A basic event in fault tree, or a component in the   
system 

IBM(e)    Birnbaum’s importance measure of component e 
ICIF(e)    Criticality importance factor of component e 
ICP(e)    Conditional probability measure of component e 
IDIF(e)    Diagnostic importance factor of component e 
IIP(e)    Improvement potential measure of component e 
IRAW(e)    Risk achievement worth factor of component e 
IRRW(e)    Risk reduction worth factor of component e 
qe    Unreliability of component e, i.e., Pr{e} 
S   Structure function of the system fault tree 

model     under study 
Usys    Unreliability function of the system, i.e., Pr{S} 

 
2. BACKGROUND 

 
Two classes of component importance measures, 

structural-importance (SI) and reliability-importance (RI), 
have been proposed for the case where the support model is a 
fault tree. By using the SI measures, the importance of a 
component to the system operation can be assessed by virtue 
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of its position in the fault tree structure, without considering 
the reliability of the component (Ref. 2). Thus, they can be 
used even if the component reliability is unknown or subject 
to changes. However, the SI measures cannot distinguish 
between components that occupy the similar structural 
positions but have drastically different reliabilities. On the 
other hand, the RI measures consider both the position of the 
component and the component reliability (Ref. 2), thus 
generally provide more information for generating the ranked 
list than the SI measures. In this paper, our study focuses on 
the RI measures.  

We present seven of existing RI measures in this section. 
We recall their mathematical definitions as well as their 
possible physical interpretations. It is worth noticing that all of 
these importance measures depend on the time t at which the 
system and its components are observed. In the following, the 
time t is omitted although it is implicitly present in all of the 
definitions. S denotes the structure function of the fault tree 
model under investigation, and e denotes a basic event (a 
component failure) in the system fault tree. 
 

2.1 Conditional Probability (CP) 
 

The conditional probability measure, denoted by ICP(e), is 
defined as ICP(e)=Pr{S|e}. According to the definition of 
conditional probabilities (Ref. 8), we have: 

e

CP

q
eS

e
eSeSeI }Pr{

}Pr{
}Pr{}|Pr{)( ∩=∩==                     (1)   

 
2.2 Risk Achievement Worth (RAW) 
 

The risk achievement worth, denoted by IRAW(e),  is 
defined as 

}Pr{
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conditional probabilities, we have:  
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IRAW(e) is also called Risk Increase Factor (Ref. 4). It 
measures the increase in system unreliability assuming the 
worst case of the failure of the component. 
 
2.3 Risk Reduction Worth (RRW)                                              
 

The risk reduction worth, denoted by IRRW(e),  is defined 
as 

}|Pr{
}Pr{)(
eS

SeI RRW = . By the definition of conditional 

probabilities, we have:  
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IRRW(e) is also called Risk Decrease Factor (Ref. 4). It 
measures the decrease of the risk (system unreliability) by 
increasing the reliability of the component. It is argued in 
Ref. 4 that RRW measure may be used to select components 
that are the best candidates for efforts leading to improving 
system reliability. 
 

2.4 Diagnostic Importance Factor (DIF) 
 

The diagnostic importance factor, denoted by IDIF(e),  is 
defined as IDIF(e)=Pr{e|S}. According to the definition of 
conditional probabilities (Ref. 8), we have: 
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IDIF(e) gives the fraction of the system unreliability (or risk) 
that involves the failure of the component e. 
 
2.5 Birnbaum’s Measure (BM) 
 

The Birnbaum’s measure, denoted by IBM(e),  is defined 
as  
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IBM(e) is thus obtained by partial differentiation of the system 
unreliability with respect to the probability of failure of the 
component. That is, it measures the sensitivity of the system 
unreliability to changes in failure probability of the 
component (Ref. 7). 
 
2.6 Criticality Importance Factor (CIF) 
 

The criticality importance factor, denoted by ICIF(e), is 
defined as 
      )()(

}Pr{
}Pr{)( eI
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The ICIF(e) is thus the probability that component e has 
caused system failure, given that the system is failed at time t 
(Ref. 7).  
 
2.7 Improvement Potential (IP) 
 

The improvement potential with respect to component e 
at time t, denoted by IIP(e), is defined as (Ref. 7)   
      e

BMBMIP qeIeeIeI )(}Pr{)()( ==                               (7)    
It may also be expressed by the CIF measure ICIF(e) by using 
eq. (6): 
     sys

CIF
e

BMIP UeIqeIeI )()()( ==                                     (8)   
It measures how much the system reliability increases if 
component e is replaced by a perfect component, that is, a 
component such that its failure probability qe=0. 
 

3. AN EXAMPLE SYSTEM 
 
We design a simple system to illustrate the semantics of 

the importance measures presented in section 2 as well as the 
process for selecting the most informative measure for guiding 
the system maintenance. Figure 1 (a) shows the fault tree 
model of the example system; figure 1 (b) shows the 
corresponding series-parallel reliability block diagram. We 
design 8 sets of component failure parameters (table 1) in 
order to illustrate the effects of the following two factors on 
the different importance measures: 
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 The position of the component in the system structure 
 The unreliability of the component in question 

The last column of table 1 gives Pr{C ∩ D}, the equivalent 
unreliability of the parallel subsystem that is composed of 
components C and D. The example failure parameters are 
designed to cover the following five cases: 
 Pr{C∩D} is less than unreliability of the most unreliable 

component in the series structure (A or B): Set I, II 
 Pr{C∩D} is equal to unreliability of the most unreliable 

component in the series structure (A or B): Set III, IV 
 Pr{C∩D} is between unreliability of the most unreliable 

component and unreliability of the most reliable 
component in the series structure (A or B): Set V, VI 

 Pr{C∩D} is equal to the unreliability of the most reliable 
component in the series structure (A or B): Set VII 

 Pr{C∩D} is greater than unreliability of the most reliable 
component in the series structure (A or B): Set VIII 

 

 
Figure 1: Example System Structure in Fault Tree and 

Reliability Block Diagram 

 
Comp. A B C D C ∩ D 

Set I 0.02 0.04 0.06 0.05 3e-3 
Set II 0.02 0.04 0.001 0.5 5e-4 
Set III 0.02 0.04 0.1 0.2 0.02 
Set IV 0.02 0.04 0.04 0.5 0.02 
Set V 0.01 0.1 0.1 0.5 0.05 
Set VI 0.02 0.04 0.06 0.5 0.03 
Set VII 0.02 0.04 0.08 0.5 0.04 
Set VIII 0.02 0.04 0.1 0.5 0.05 

 
Table 1: Failure Parameters of the Example System 

 
4. INVESTIGATION & DISCUSSION 

 
Tables 2 – 9 present the results of performing component 

importance analysis for the example system (section 3) using 
the seven measures depicted in section 2. The last column of 
each table provides the ranking of the components. The 
example shows that the measures may lead to different 
rankings. This was to be expected, since the measures are 
defined differently. 
 
4.1 Observations 

 

The observations resulted from the experimental results in 
tables 2-9 include: 
1. Both CP and RAW measures cannot distinguish between 

components that occupy similar positions in a series 
structure but have drastically different failure 
probabilities. This result is unreasonable because it is 
clear that the most unreliable component in the series 
structure should be ranked the highest in the checklist of 
the repairperson.  

2. The experimental results for measures of RRW, CIF, and 
IP illustrate the fact that in a series structure, the 
component with the lowest reliability has the highest 
importance value; the components with the same 
equivalent failure probability have the same importance 
value. For example, in table 4, RRW, CIF, and IP 
measures give the same ranking of B>A=C=D, because 
the components in the series structure, that is, A, B, and C 
∩ D, have the failure probabilities of 0.02, 0.04, and 0.02, 
respectively. 

3. The experimental results for measures of RRW, CIF, and 
IP also show that all the components in a parallel 
structure have the same importance when we use the 
RRW, CIF or IP measure. This result seems reasonable 
because if a parallel structure fails, it will start 
functioning again irrespective of which of the 
components we repair. 

4. The experimental results for measures of CP, RAW, and 
BM illustrate that irrespective of the failure probabilities 
of the components, the components A and B in the series 
structure always have higher ranking than components C 
and D in the parallel structure. This may induce 
misleading ordering in terms of guiding the system 
maintenance. 

5. The experimental results for the BM measures show that 
for a component in a series structure, the more reliable it 
is, the lower ranking it has; however, for the component 
in a parallel structure, the more reliable it is, the higher 
ranking it has. From the maintenance point of view, this 
result seems unreasonable, because the most unreliable 
component in a series or a parallel structure should 
always be checked first.   

6. Among the seven measures, the DIF measure is the most 
dynamic and responsive one in the sense that the ranking 
using the DIF can change according to the changes in the 
component reliabilities. Moreover, the importance 
analysis using DIF measure can always result in a 
deterministic ranking of the components. In other words, 
the components that occupy similar structural positions 
(for both series and parallel structures) but have different 
reliabilities will be ranked differently.    

7. To support our later conclusions, it is necessary for us to 
examine the DIF measure further. Consider the parameter 
sets I and II in table 1, both sets share the same 
characteristic that the equivalent unreliability of the 
parallel subsystem (3e-3) is less than the unreliability of 
A (0.02)) or unreliability of B (0.04). Hence, the RRW, 
CIF, and IP measures produce the ranking of B>A>C=D. 
However, the DIF measure gives the ranking of 
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B>A>C>D when the parameter set I is used, the ranking 
of B>D>A>C when the parameter set II is used. The DIF 
measure provides more information for generating the 
ranked list than the RRW, CIF, and IP measures because 
it can distinguish between components that occupy 
similar positions in a parallel structure but have different 
failure probabilities: the more unreliable the component 
is, the higher ranking it has. Also, the DIF measure can 
account for the effects of the component that has 
drastically different unreliability from others. For 
examples, the component D in set II is much more 
unreliable than the other components (A, B, C), though 
the equivalent unreliability of the parallel subsystem the 
component D is belonging to is the lowest, the component 
D is ranked higher than the component A. This is 
reasonable. Similar conclusions can be obtained by 
comparing the experimental results of set II and IV, or set 
V and VI. 

 
Comp. A B C D Order 
CP 1.000    1.000     0.106    0.116 A=B>D>C 
RAW 16.123    16.123    1.713    1.865 A=B>D>C 
RRW 1.446     2.704     1.048 1.048 B>A>C=D 
DIF 0.323     0.645 0.103    0.093 B>A>C>D 
BM 0.957     0.977     0.047    0.056 B>A>D>C 
CIF 0.309    0.630 0.046 0.046 B>A>C=D 
IP 0.019     0.039     0.003 0.003 B>A>C=D 

Table 2: Measures & Ranking of RI Using Parameter Set I 

 
Comp. A B C D Order 
CP 1.000     1.000     0.530    0.060 A=B>C>D 
RAW 16.759    16.759    8.875    1.008 A=B>C>D 
RRW 1.474     2.912     1.008    1.008 B>A>C=D 
DIF 0.335     0.670     0.009    0.504 B>D>A>C 
BM 0.960     0.980     0.470    .0009 B>A>C>D 
CIF 0.322     0.657     0.008    0.008 B>A>C=D 
IP 0.019     0.039     .0005    .0005 B>A>C=D 

Table 3: Measures & Ranking of RI Using Parameter Set II 

 
Comp. A B C D Order 
CP 1.000       1.000 0.247    0.153 A=B>C>D 
RAW 12.818    12.818    3.171    1.965 A=B>C>D 
RRW 1.318       1.970 1.318    1.318 B>A=C=D 
DIF 0.256     0.513     0.317    0.393 B>D>C>A 
BM 0.941     0.960     0.188    0.094 B>A>C>D 
CIF 0.241     0.492     0.241    0.241 B>A=C=D 
IP 0.019     0.038     0.019    0.019 B>A=C=D 

Table 4: Measures & Ranking of RI Using Parameter Set III 

 
Comp. A B C D Order 
CP 1.000 1.000     0.530    0.097 A=B>C>D 
RAW 12.818    12.818    6.788    1.241 A=B>C>D 
RRW 1.318 1.970   1.318    1.318 B>A=C=D 

DIF 0.256     0.513 0.272    0.621 D>B>C>A 
BM 0.941     0.960     0.470    0.038 B>A>C>D 
CIF 0.241     0.492     0.241    0.241 B>A=C=D 
IP 0.019 0.038     0.019    0.019 B>A=C=D 

Table 5: Measures & Ranking of RI Using Parameter Set IV 

 
Comp. A B C D Order 
CP 1.000 1.000 0.555     0.198   A=B>C>D 
RAW 6.513    6.513    3.611     1.290 A=B>C>D 
RRW 1.059   2.581    1.409 1.409 B>C=D>A 
DIF 0.065    0.651    0.361     0.645 B>D>C>A 
BM 0.855    0.941    0.446     0.089 B>A>C>D 
CIF 0.056    0.613    0.290 0.290 B>C=D>A 
IP 0.009    0.094    0.045     0.045 B>C=D>A 

Table 6: Measures & Ranking of RI Using Parameter Set V 

 
Comp. A B C D Order 
CP 1.000 1.000 0.53 0.116 A=B>C>D 
RAW 11.439 11.439 6.058 1.323 A=B>C>D 
RRW 1.271   1.77 1.477 1.477 B>C=D>A 
DIF 0.229 0.458 0.364 0.661 D>B>C>A 
BM 0.931 0.952 0.470 0.056 B>A>C>D 
CIF 0.213 0.435 0.323 0.323 B>C=D>A 
IP 0.019 0.038 0.028 0.028 B>C=D>A 

Table 7: Measures & Ranking of RI Using Parameter Set VI 

 
Comp. A B C D Order 
CP 1.000    1.000     0.53     0.135 A=B>C>D 
RAW 10.327   10.327    5.469    1.389 A=B>C>D 
RRW 1.235     1.636     1.636    1.636 C=D=B>A 
DIF 0.207     0.413     0.438    0.694 D>C>B>A 
BM 0.922     0.941     0.470    0.075 B>A>C>D 
CIF 0.190     0.389     0.389    0.389 C=D=B>A 
IP 0.018     0.038     0.038    0.038 C=D=B>A 

Table 8: Measures & Ranking of RI Using Parameter Set VII 

 
Comp. A B C D Order 
CP 1.000     1.000    0.53 0.153 A=B>C>D 
RAW 9.413    9.413 4.985     1.443 A=B>C>D 
RRW 1.207    1.54     1.795     1.795 C=D>B>A 
DIF 0.188    0.377    0.499     0.721 D>C>B>A 
BM 0.912    0.931    0.470     0.094 B>A>C>D 
CIF 0.172    0.351    0.443     0.443 C=D>B>A 
IP 0.018    0.037   0.047     0.047 C=D>B>A 

Table 9: Measures & Ranking of RI Using Parameter Set VIII 

 
4.2 Discussions 
 

Our observations in section 4.1 show that conditional 
probability (CP), risk achievement worth (RAW), and 
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Birnbaum’s measure (BM) may induce misleading 
conclusions in terms of guiding system maintenance, though 
some of these measures serve a good indicator for selecting 
components that are the best candidates for efforts leading to 
improving system reliability. Risk reduction worth (RRW), 
criticality importance factor (CIF), and improvement potential 
(IP) generally induce reasonable conclusions. But they give 
the same result for all components in a parallel structure 
irrespective of the (drastic) difference among the component 
reliabilities. Under this circumstance, the maintainer would 
lack of a deterministic order to check the failed components in 
the case of a system failure. In addition, the CIF and IP 
measures become impractical for large dynamic systems, 
which must be solved using Markov approaches (Ref. 3), due 
to the well-known state explosion problem of Markov 
approaches. Also, the assessment of IBM(e) in both measures 
involves simultaneously solving a set of differential equations 
(the number of equations is the same as the number of states 
present in the Markov model) for the state occupation 
probabilities and a much larger set of partial differential 
equations for the component importance analysis (Ref. 5). The 
solutions to those equations are computationally intensive.  

As a result of our current study, we propose the DIF 
measure to be the most informative and appropriate measure 
for the maintenance-oriented importance analysis. The DIF 
measure generally produces the ranking that is consistent with 
those produced by using the RRW, CIF, and IP measures; it 
accounts for the effects of exceptionally unreliable 
component; it can always distinguish components that occupy 
similar structural positions (for both series and parallel 
structures) but have different reliabilities.   

In the following section, we propose the basic algorithm to 
compute the DIF measure. 

 
5. ALGORITHM TO COMPUTE DIF 

 
In section 2.4, we present the definition of the DIF 

measure as (eq. 4) 
sys

DIF

U
eS

S
eSSeeI }Pr{

}Pr{
}Pr{}|Pr{)( ∩=∩== . 

The problem of computing the DIF measure is actually a 
problem of finding Pr{S ∩ e} and Usys.  Usys is the probability 
of the occurrence of the top event of the system fault tree 
model.  To calculate Pr{S ∩ e},  we generate a new fault tree 
by applying AND logic operation between the original system 
fault tree and the basic event e. Thus, the top event of the new 
fault tree is S ∩ e, and the analysis of the new fault tree gives 
Pr{S ∩ e}. Figure 2 gives a conceptual overview of the fault 
tree approach to computing the DIF measure. 

In the following of this section, we give a closer look at 
the approach to solving a fault tree. Solving a fault tree 
involves using appropriate techniques for finding the 
probability of occurrence of the top event based on the 
probability of occurrence of the basic events. Traditional or 
static fault trees (which have only static gates AND, OR, and 
K-out-of-N, Ref. 3) can be solved with a variety of techniques 
such as minimal cut-sets with inclusion-exclusion, minimal 
cut-sets with sum of disjoint products, and binary decision 

diagrams (BDD). It has been shown that BDD is the most 
efficient solution technique for solving the static fault trees. 
Fault trees that include dynamic gates such as FDEP, PAND, 
SEQ, and SPARE gates (Ref. 3) cannot be solved with those 
techniques. Instead, dynamic fault trees are translated into 
Markov chains for solutions. The biggest drawback of Markov 
approach is the well-known state explosion problem, which 
limits the size of the system to be solved. It is for this reason 
that Ref. 6 proposed a modular approach that can integrate the 
Markov chain based approach with the BDD solution 
wherever possible. The modular approach implements the 
process of finding the independent modules in a fault tree and 
solving the static subtrees using the BDD technique and the 
dynamic subtrees using Markov-based technique, and 
integrating the solutions of those independent subtrees to 
obtain the probability of occurrence of the top event, that is, 
the system unreliability. 

 

Figure 2: A Conceptual Overview of Approach for Computing 
DIF Measure 

 
 6. INCORPORATION OF COMMON CAUSE FAILURES 

 
Practical systems can be subject to common-cause failures. 

Common-cause failures (CCF) are multiple failures that are a 
direct result of a common cause (CC) or a shared root cause 
(Ref. 7), such as extreme environmental conditions, human 
operation and maintenance errors. Examples abound in the 
real world. Sabotage, earthquake, hurricane, and power outage 
can obviously cause the simultaneous failure of numerous 
components in a system. The challenge from CCF is to cope 
with multiple dependent faults at the same time. In this 
section, we present an efficient decomposed approach for 
incorporating CCF into the MO-IA using the DIF measure, 
based on our discussion in Ref. 9. 

First we denote the CC related to a system as CC1, CC2, 
…, CCm, where m is the total number of CC related to the 
system. The m common-causes partition the event space into 
the following 2m disjoint subsets, each called a common-cause 
event (CCE): 

mCCCCCCCCE ∩∩∩= ...211
, 

mCCCCCCCCE ∩∩∩= ...2112
, 

…… , 
mCCCCCCCCE m ∩∩∩= ...2112

. 
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Thus, we can build a space called “CCE space” over this set 
of collectively exhaustive and mutually exclusive common-
cause events that can occur in a system, that is, 

},...,,{
221 mCCECCECCECCE =Ω . If )( jCCEP denotes the 

probability of jCCE  occurring, then we have 

∑ =
=

m

j jCCEP2

1
1)(  and φ=∩ ji CCECCE  for any ji ≠ . 

Based on the above CCE space and the “total probability 
theorem”, we can calculate the probability of occurrence of 
the top event, i.e., the system unreliability, as: 

∑
=

•=
m2

1i

])|fails (systemPr[ )P(CCECCEU iisys
                   (9)                                                                     

where Pr{system fails|CCEi} is a conditional probability that 
the system fails conditioned on the occurrence of CCEi. It is 
actually a reduced fault tree reliability problem in which the 
components affected by CCEi do not appear. Specifically, in 
the system fault tree model, each basic event (the failure of a 
component) that is affected by CCEi will be replaced by a 
constant logic value ‘1’ (True). After the replacement, a 
Boolean reduction can be applied to the system fault tree to 
generate a simpler fault tree in which all the components 
affected by CCEi do not appear. Most importantly, the 
evaluation of the reduced fault tree can proceed without 
further consideration of common-cause failures. Thereby, the 
overall solution complexity is reduced. In summary, the 
method decomposes a fault tree reliability problem with CCF 
into a number of reduced reliability problems in which the 
CCF are factored out. Figure 3 shows a conceptual overview 
of the decomposed approach for incorporating the CCF. 
 

 
Figure 3: A Conceptual Overview of the Decomposed 

Approach for Incorporating CCF 
 

Finally, we can incorporate the CCF into the component 
importance analysis by applying the decomposed approach to 
the solution of Pr{S ∩ e} and Usys in the definition of the DIF 
measure (eq. 4). 

 
REFERENCES 

 
1. J. Andrews and T. Moss, Reliability and Risk Assessment, 
1993, Longman Scientific and Technical, Essex.   

2. A. Anne, Implementation of Sensitivity Measures for Static 
and Dynamic Subtrees in DIFtree, 1997, M.S. Thesis, 
University of Virginia. 
3. J. B. Dugan and S. A. Doyle, “New results in fault-tree 
analysis”, Tutorial Notes Ann. Reliability and Maintainability 
Symp., 1996 Jan. 
4. Y. Dutuit and A. Rauzy, “Efficient algorithm to assess 
component and gate importance in fault tree analysis”, 
Reliability Eng and System Safety, vol. 72, 2001, pp 213-222. 
5. P. M. Frank, Introduction to System Sensitivity, 1978, 
Academic Press.   
6. R. Gulati and J. B. Dugan, “ A modular approach for 
analyzing static and dynamic fault trees”, Proc. Ann. 
Reliability and Maintainability Symp., 1997 Jan. 
7. A. Hoyland and M. Rausand, System Reliability Theory: 
Models and Statistical Methods, 1994, Wiley Series in 
Probability and Mathematical Statistics, John Wiley & Sons. 
8. A. Papoulis, Probability, Random Variables, and Stochastic 
Processes (3rd Edition), 1991, McGraw-Hill Series in 
Electrical Engineering, McGraw-Hill.  
9. L. Xing, “Reliability analysis of fault-tolerant systems with 
common-cause failures”, Proc. The Intl. Conf. on Dependable 
Systems and Networks, 2003 June. 
 

BIOGRAPHY 
 

Liudong Xing, Ph.D. 
Department of Electrical and Computer Engineering 
University of Massachusetts Dartmouth 
285 Old Westport Road  
North Dartmouth, MA 02747 USA  
 
e-mail: lxing@umassd.edu 
 
Liudong Xing received her B.E. degree in Computer Science 
from Zhengzhou University, China, in 1996, and was a 
Research Assistant in Shenyang Institute of Computing 
Technology, Chinese Academy of Science, China from 1996 
to 1998. She was awarded the M.S. and Ph.D. degree in 
Electrical Engineering from the University of Virginia, 
Charlottesville, in 2000 and 2002, respectively. Dr. Xing is an 
Assistant Professor of Electrical and Computer Engineering 
Department at the University of Massachusetts, Dartmouth. 
Her major research interests lie in the design and analysis of 
dependable computer-based systems and networks. She is a 
member of the IEEE.  
 

Failure parameters

Traditional FT
reliability
analysis
software
package

ignoring CCF

Fault tree model removing
components of A

Fault tree model removing
components of A m

P[CCE1]

P[CCE2   ]m

Pr[system fails|CCE1]

System
unreliability

including CCF

Traditional FT
reliability
analysis
software
package

ignoring CCF

m

CCE1

CCE2

Pr[system fails|CCE2   ]

Usys

RAMS 2004 - 539 - 0-7803-8215-3/04/$17.00 © 2004 IEEE


	footer1: 


