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ECE454/544: Fault-Tolerant Computing & 
Reliability Engineering

Lecture #15 –

Reliability Analysis Using Markov Models (I)

Instructor: Dr. Liudong Xing

Fall 2022

Dr. Xing 

Administrative Issues  

• Homework#6 
– Due by Nov. 7, Monday (Today)

• No ECE544 on Nov. 9, Wednesday 
– Follow Friday’s Class Schedule

– Friday: Veterans Day Holiday; No Classes

• Project final report
– Due by Nov. 30, Wednesday

– Please check out the Report Guidelines for requirements
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Review of Lecture #14  

• Special dynamic gates capture sequential dependencies arising in 
modeling fault tolerant systems

– FDEP for modeling situations where one component’s correct 
operation is dependent upon the correct operation of some other 
component

– CSP for modeling cold spares which are unpowered before being 
used

– WSP for modeling warm spares which fail at a reduced rate before 
being used 

– HSP for modeling hot spares which fail at active failure rate before 
being switched into active use

– PAND for modeling ordered ANDing events

– Two examples: HECS and FTPP
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Reliability Models

• Fault trees (static)

• Reliability Block Diagrams (RBD)

• SDP, I/E based on minimal cut-sets

• SDP, I/E based on minimal path-sets

• Binary Decision Diagrams (BDD)

Analyze static systems whose failure can be expressed as 
the combination of component failures 

-– Combinatorial Models
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Markov models

• Can evaluate dynamic fault trees, which are used for 
modeling sequence dependencies, priorities, 
cold/warm/hot spares etc.
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A Review of Dynamic Gates (L#15)

FDEP

Trigger event
whose

occurrence
forces

other events
to occur

Dependent events that are
forced to occur when the

trigger event occurs.

The FDEP has no
logical output. Thus it is

connected to the fault tree
with a dashed line.

CSP

Output of gate occurs
when the primary and all
spares have failed (or are
otherwise unavailable).

Primary
component

Spare components.
Spares are used in

defined order.

Spare components
have zero failure rate
before being switched

into active use.

Output of gate occurs
when the primary and all
spares have failed (or are

otherwise unavailable).

Primary
component

Spare components.
Spares are used in

defined order.

Spare components
have same failure rate
before and after being

switched into active
use.

HSP

Output of gate occurs
when the primary and all
spares have failed (or are
otherwise unavailable).

Primary
component

Spare components.
Spares are used in

defined order.

Spare components
have reduced failure

rate before being
switched into active

use.

WSP

Output occurs if both A and
B occur, and if A occurred

before B

A B
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Fault Trees and Markov chains

• Any static fault tree model (with exponential 
distributions) can be solved as a Markov chain.
– In general, Markov chain solution is more time-

consuming than the BDD (and in fact most other 
combinatorial approaches)

• Any dynamic fault tree model (with exponential 
distributions) can be solved as a Markov chain
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Agenda

• Basic Concepts on Markov model

• Reliability Analysis using Markov model
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Random Variable (Review, L#7)

• A random variable (r.v.) X is a real‐valued function from 
some sample space Ω to R, i.e., X: Ω  R

• A r.v. X maps each outcome ω in Ω to a real number X(ω)     
R

• Example: “tossing a fair coin three time”

– Ω = {TTT; TTH; THT; THH; HTT; HTH; HHT; HHH}

– Let X be the number of heads tossed in 3 times

– We can map each outcome in Ω to a real number:

X(TTT)=0;  X(TTH)=1; X(THT)=1; X(THH)=2; 

X(HTT)=1; X(HTH)=2; X(HHT)=2; X(HHH)=3


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Stochastic Processes  

• Definition: 

A family of r.v.’s {X(t) | t   T} that is indexed by a parameter t (such as 

time) is known as a “stochastic process” ( or chance/random process)

– Index set:  T  the set of all possible values of t

• Each element of T is referred to as a parameter

– State space the set of all possible values assumed by r.v.’s X(t)

• Each of these values assumed by r.v. X(t) is called a state of the SP


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Markov Processes

• A Markov process is a stochastic process satisfying the 

Markov property: probabilities of future states depend only on 

the current state and not on how the process reached that state

– {X(t)=j}: event that the system is in state j at time t

– Pj(t)=P{X(t)=j}: the probability of the event

• A discrete state Markov process is called a Markov chain

{ ( ) | ( ) ; ( ) ( );0 }

{ ( ) | ( ) }  

                                                    ( );0

P X t v j X t i X u x u u t

P X t v j X t i

x u u t
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  
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Markov Processes (Cont’d)

• State transition probability: 

• Stationary (steady-state) transition probability: if the transition 
probability does not depend on the time t but only on the time 
interval v for the transition 

0for      })(|)({  t,v(v),PitXjvtXP ij

Be homogeneous in time!

  })(|)({ itXjvtXP 
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Markov Processes (Cont’d)

• State transition probabilities satisfy: 
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-- Chapman-Kolmogorov equation, 
following from the Markov property 
& Total Probability Theorem

P1:

P2:

P3:
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Markov Processes (Cont’d)

• State transition rate from state i to state j is defined as: 

• Constant transition rate αij the time the system is staying in 
state i until transition to state j is exponentially distributed with 
parameter αij !
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Agenda

Basic Concepts on Markov model

• Reliability Analysis using Markov model

Dr. Xing Lecture #15 16

Reliability Analysis Using Markov Chains

• Step 1: convert the fault tree model to a Markov 
chain

• Step 2: find the state equations of the Markov chain

• Step 3: find state probabilities by solving the state 
equations

• Step 4: find the system reliability or unreliability
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Step 1: Fault Tree to Markov Chain Conversion

• Start with initial state in which all components are 
operational.

• For each operational state, enumerate all child states 
by considering effects of one component (call it j) 
failure at a time

• Establish transition rate from parent to child state as 
failure rate of component j (times the number of 
active replicates).

• Determine if “new” state is operational or failed.

• Continue until all operational states are enumerated.

Dr. Xing 18

Hands-On Problems (1)

• Convert the following dynamic fault trees to Markov chains

A

B

B

A

A

A

B/0

BB  /

A BA
BB

BB




/
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Hands-On Problems (2)

• Consider a two-component cold standby sparing system as 
shown in the follow figure:

• Find 
– Dynamic fault tree of the system, and

– The Markov chain model

Primary

Spare

Switch
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Hands-On Problems (3)

• Consider a repairable system composed of a single component, 
the failure rate of the component is λ, the repair rate is μ. Find 
the Markov chain model.
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Reliability Analysis Using Markov Chains

 Step 1: convert the fault tree model to a Markov 
chain 

• Step 2: find the state equations of the Markov 
chain

• Step 3: find state probabilities by solving the state 
equations

• Step 4: find the system reliability or unreliability

Dr. Xing 22

State Equations of Markov Processes
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Where A is the called the transition rate matrix:
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State Equations – Derivation & Observations

• Observations
– αjk, k=0,1,…,j-1,j+1,…,r are transition rates from state j to the 

other states, called departure rates from state j. Then,

– αjj is the sum of the departure rates from state j

– The sum of each column of A is ZERO 

– When the process enters state j, the system will stay in this 
state a time Tj, which is exponentially distributed with 
parameter αjj. Thus the mean staying time in state j is

rjTE
jj

j ,...,1,0for     
1

)( 

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Hands-On Problems (4)

• Find the state equations of 
Markov chains for the 
– CSP system

– HSP system

– repairable system composed of a 
single component, the failure rate 
of the component is λ, the repair 
rate is μ.

A B
A B/0

BA
A BB  /
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Reliability Analysis Using Markov Chains

 Step 1: convert the fault tree model to a Markov 
chain 

 Step 2: find the state equations of the Markov chain

• Step 3: find state probabilities by solving the 
state equations

• Step 4: find the system reliability or unreliability

Dr. Xing 26

Solving State Equations

• Unique solution to all the state probabilities Pj(t) is 
obtained by solving

• Solutions
– Asymptotic (steady-state/long-run) solution

– Time-dependent solution
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Asymptotic Solution (1)

• The long-run (steady-state) probabilities, that is, Pj(t) as t  
are of interest in many applications

• If Pj(t)  Pj (a constant), as t  , then

rjPPtP jjj
t

,...,1,0,)()(lim 
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Asymptotic Solution (2)

• The steady-state equations are therefore:
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Asymptotic Solution (3)

• To calculate the steady-state probabilities Pj, use r of (r+1) 
linear algebraic equations and the fact that the sum of state 
probabilities always is equal to 1, that is, 

• The initial state of the process has no influence on the 
steady-state probabilities!
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Hands-On Problem (5)

• Consider the single-component repairable system, find the state 
equations for computing steady-state probabilities and steady-state 
probabilities
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Asymptotic Solution (4)

• Steady-state equations  Balance equations

Rate entering = Rate leaving

• Example:
– The balance equation is:

• Balance equations

Rate leaving  =  rate  entering

State

0: μP0 = λP1

1: λP1 =  μP0

1)(
0




r

j
j tP Steady-state probabilities Pi

Dr. Xing 32

Solving State Equations (revisit)

• Unique solution to all the state probabilities Pj(t) is 
obtained by solving

• Solutions
√ Asymptotic (steady-state/long-run) solution

– Time-dependent solution
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Time-Dependent Solution (1)

• State equations
– A set of linear, 1st-order differential equations

– The easiest and commonly used method is by Laplace transforms

• Laplace transforms
– http://mathworld.wolfram.com/LaplaceTransform.html

– http://www.vibrationdata.com/Laplace.htm

– Any textbooks on mathematical analysis

– Definition, some important properties, and some commonly-used 
transforms are written on board

)()( tPtPA



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Time-Dependent Solution (2)

• Time-dependent solution using Laplace transform
– Pj

*(s): the Laplace transform of the state probability Pj(t) 

– According to the property:  )0()]([)]('[ ftfLstfL 

,...,r, j

PssPPtPLstPL jjjjj

10

)0()()0()]([)]([ *


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for                                                   
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Time-Dependent Solution (3)

• Thus, the Laplace transform of the state equations
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Time-Dependent Solution (4)

• By introducing LT, the original state equations (a set 
of linear, 1st-order differential equations) have 
been reduced to a set of linear equations Eq. (LTSE)

• Solving Eq. (LTSE) gives all Pj
*(s), afterwards, the 

state probabilities Pj(t) can be determined from the 
inverse Laplace transforms! 
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Hands-On Problem (6)

• Consider a repairable system composed of a single component, 
the failure rate of the component is λ, the repair rate is μ. The 
Markov chain model is

• Find the state probabilities P1(t) and P0(t) 

1: component is functioning
0: component is failed
Initial condition:

P1(0)=1, P0(0)=0 
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Reliability Analysis Using Markov Chains

 Step 1: convert the fault tree model to a Markov 
chain

 Step 2: find the state equations of the Markov chain

 Step 3: find state probabilities by solving the state 
equations

• Step 4: find the system reliability or unreliability
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Step 4: Reliability Analysis Using Markov Chains

• System states S can be grouped into two sets
– O: all states in which the system is operational

– F: all states in which the system is failed F = S - O


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Hands-on Problems (7)

• Consider a parallel system of two independent and identical 
components with failure rate λ. When one of the 
components fails, it is repaired. The repair time is assumed 
to be exponentially distributed with repair rate μ. When 
both components have failed, the system is considered to 
have failed and no recovery is possible. Let the number of 
functioning components denote the state of the system. The 
state space is thus {0,1,2}. Assume the system to be in state 
2 at time t=0.

– Draw the state transition diagram for the system Markov chain.
– Find the state equations for the time-dependent solution.
– Find the state equations for the asymptotic solution.
– Find the steady-state probabilities: P0, P1, P2
– Find the Laplace transform of time-dependent state probabilities: 

P0*(s), P1*(s), P2* (s)



ECE544 - Lecture #15 21

Dr. Xing 41

Summary of Lecture #15

• A Markov process is a stochastic process with 
Markov property: probabilities of future states 
depend only on the current state and not on the 
history

• Any fault tree model (static or dynamic) with 
exponential component failure distribution can be 
solved as a Markov chain (with four steps)

Dr. Xing 

Things to Do

• Homework  

• ECE544 Project Report

– Due Wednesday, Nov. 30 

– Please check out the Report Guidelines for 
requirements.  


