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ECE 454/544: Fault-Tolerant Computing & 
Reliability Engineering

Lecture #16–

Markov-based Safety Analysis &

Problems and Solution

Instructor: Dr. Liudong Xing

Fall 2022

Dr. Xing 

Administrative Issues
(Nov. 16, Wednesday)  

• Homework#7 (last one)
– Due by Nov. 21, Monday  

• Project final report
– Due by Nov. 30, Wednesday

– Please check out the Report Guidelines for requirements
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Review of Lecture #15

• A Markov process is a stochastic process with Markov 
property: probabilities of future states depend only on the 
current state and not on the history

• Any fault tree model (static or dynamic) with exponential 
component failure distribution can be solved as a Markov chain 
(with four steps)
– Step 1: convert the fault tree model to a Markov chain
– Step 2: find the state equations of the Markov chain
– Step 3: find state probabilities by solving the state equations

• Asymptotic (steady-state/long-run) solution

• Time-dependent solution

– Step 4: find the system reliability or unreliability

Agenda

• Markov-based safety analysis

• Markov analysis
– Pros & Cons

– Solutions to address the Cons
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Safety Concepts (L#1 revisit)

• Safety, S(t) -- the probability that a system either performs 
correctly or discontinues its operations in a “safe” manner.
– Not disrupt the operation of other systems

– Cause no harm to any people associated with the system

• Safety is the probability that a safe action will result after a 
failure occurs
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Safety Concepts

• Concepts of safe and unsafe highly depend on the 
applications
– The definition of safe and unsafe failures must be created uniquely 

for each application

• Fundamental concept of safety analysis  is that the system 
will possess two different ways in which it can fail
– System fails safely vs. system fails unsafely
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Safety Modeling and Analysis

• Markov models are usually required to model the safety
– Splitting the system failed states into two separate states: failed safe (FS) and 

failed unsafe (FU)

• Example: a simplex system containing a hardware module with a 
failure rate λ & self-diagnostics with a fault detection coverage of 
C.
– Safe failures: failures are detected by the self-diagnostics 

– Unsafe failures: failures are not detected by the self-diagnostics 

Markov safety model
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Safety Analysis of a Simplex System

• Solution:

• Assume PO(0)=1, PFS(0)=PFU(0)=0

Markov safety model State equations
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Safety Analysis of a Simplex System (Cont’d)

• Taking the Laplace transform of the state equations provides

• Taking the inverse Laplace transform generates

• Thus,
– System reliability

– System safety
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Safety Analysis of a Simplex System (Cont’d)

• Assume λ=1e-5 failures / hour and C=0.9

• Professional society: The International System Safety Society 

http://www.system-safety.org
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Agenda

Markov-based safety analysis

• Markov analysis
– Pros & Cons

– Solutions to address the Cons
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Pros. of Markov Models

• Powerful in terms of modeling capability, as compared 
with combinatorial models (RBD, BDD, static fault 
trees, cut-sets, etc)
– Not restricted to only two possible states of the component

– Allow for easily modeling
• various dependencies (FDEP, HSP, WSP, CSP, PAND)

• rather complicated repair strategies

• fault imperfect coverage
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Cons of Markov Models

• Limited to exponential time-to-failure distributions

• State explosion problem
– The number of system states increase exponentially with the 

size and complexity of the system  intractable models

– Suitable only for relatively small systems

• Solutions
– Modularization

– Bounding method 
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Solution #1: Modular Approach  

Given a fault
tree as input

Find
independent

subtrees

Solve each tree
separately as

BDD or Markov
chain

Combine
results

• Modularization combines the best of combinatorial (BDD) and 
Markov approaches 
– Use fast and efficient BDD approach for static modules
– Build Markov chain automatically when needed for dynamic behavior
– divide-and-conquer helps avoid models which are too large to solve
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HECS Dynamic Fault Tree (L#15)

• Processors A1 and 
A2 share the cold 
spare A

• 3 of the 5 memory 
units are needed; if 
MIU fails, memory is 
not accessible

• At least one bus is 
required
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Modularized HECS Fault Tree
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References
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Solution #2: Bounding Methods  

• Reduce the number of states required in the model to a 
more manageable level

• Only a portion of the state space of Markov chains is 
generated for solution by employing some state 
truncation techniques, for example, 
– aggregating together many states with some common 

characteristics such as beyond a certain number of failures

– then considering them to be first operational states to achieve 
lower bound, and then failed states to achieve the upper bound



10

Dr. Xing 19

Original Definition

• Assume the original MC is a stochastic process X={X(t); 
t>=0}, with state space O  {f}, where O is the set of 
operational states in which the system is up; f is a failed and 
absorbing state in which the system is down

})({)( ftXPtURsystem 

An absorbing state is a state that, once entered, cannot 
be left until the system starts  a new mission
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Bounding Methods  

• We generate a new MC, X`={X`(t); t>=0}, with state space 
G  {f, U}, where G is a set of operational states, which is a 
subset of O, f is a failed and absorbing state, U is a set of 
truncation states.

• In general, the states aggregated into U may include both 
operational states and failed states

• Then
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Summary of Lecture #16

• Safety is the probability that a safe action will result after a 
failure occurs, highly dependent on the applications

• Safety analysis usually requires state space methods (e.g., 
Markov)

• Markov models are powerful in terms of modeling 
capabilities (repair, coverage, spare, dependencies, etc), but 
suffer from the state-explosion problems

• An efficient and accurate solution is to use modularization, 
which combines the best of Boolean (BDD) and Markov 
approaches

• Another solution is to use the bounding method to obtain 
an approximate estimate. 
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Things to Do

• ECE544 Project

– Final report due Wed., Nov. 30 

– Presentation slides due Mon., Dec. 5 

– Please check out Report & Presentation Guidelines 
for requirements.  

Next Topic

• Network reliability analysis


