
A Modular Approach for Analyzing Static and Dynamic Fault Trees

Rohit Gulati; Alta Group of Cadence Design Systems, Sunnyvale

Joanne Bechta Dugan; University of Virginia, Charlottesville

Key Words: Static and Dynamic Fault trees, Markov chain, Binary Decision Diagrams, Modularization, Reliability Analysis

SUMMARY AND CONCLUSIONS

Three commonly used analytical techniques for
reliability evaluation are fault trees, Binary decision diagrams
and Markov chains. Each of these techniques have advantages
and disadvantages and the choice depends on the system being
modeled. Fault trees have been found to be the most popular
choice in terms of building an analytical model of a system. It
provides a compact representation of the system and is easily
understood by humans. However, fault trees lack the modeling
power and its solution time increases exponentially with the
size of the system being modeled.

In this paper, we present a new exciting hybrid
approach, called the modular approach, for the efficient
analysis of both static and dynamic fault trees. It provides a
combination of BDD solution for static fault trees and Markov
chain solution for dynamic fault trees coupled with the
detection of independent subtrees. The algorithms used for
modularization, integrating the results obtained from the
separate solution of the independent modules (subtrees) and
incorporating coverage modeling are discussed in detail in this
paper. The modular approach is applied to an example systems
to demonstrate the potential of this research

1 INTRODUCTION

Fault Trees have been widely used for reliability
analysis for about forty years. They were first developed in the
1960s to facilitate analysis of the Minuteman missile system
[21], and have been supported by a rich body of research since
their inception. It provides a compact representation of the
system and can be easily specified by humans. However, the
analysis of large fault trees is a tedious process even though
considerable progress has been made in this field. Bryant's
Binary Decision Diagram (BDD) [5] provides a faster and
more efficient means for analyzing such large fault trees. But
the use of BDD is limited to the analysis of static fault trees
only. Dynamic fault trees, which are used for modeling
sequence dependencies, can only be solved using Markov
solutions methods. The disadvantage of Markov models and
BDDs, is that its direct specification is an awkward, time

consuming and an error prone task.

Most of the tools developed thus far, for reliability
analysis are based on fault trees which are solved by converting
to either its equivalent BDD [1][7][8] or to Markov model [9].
Tools that convert fault trees to BDD for solution can not be
used to model sequence dependencies and hence, can not
provide dynamic fault tree solutions. But, they can solve large
fault trees in little time because there is no relation between the
number of components of a system and the size of the BDD
that represents it. It is not uncommon to find large fault trees.
For example the fault tree for the newly designed space station
contains approximately 1600 basic events [171.

Tools that allow dynamic fault tree analysis by
converting the fault tree to a Markov chain can not solve large
fault trees because the size of the resulting Markov model
increases exponentially and so does the solution time.
Moreover, such tools convert the entire fault tree to a Markov
model irrespective of the fact whether the fault tree has any
dynamic gates. A dynamic fault tree can have static and
dynamic gates, hence, conversion of a fault tree containing
only static gates to a Markov model can be very inefficient.

A more efficient and powerful means for fault tree
analysis can be provided by the use of both BDD and Markov
solution methods in tandem. DIFtree, a fault tree analysis tool
developed at the University of Virginia [lo], uses a modular
approach which provides a BDD solution for static fault trees
and Markov chain solution for dynamic fault trees. A fault tree
is converted to a Markov chain only if it has one or more
dynamic gates. If the fault tree has only static gates it is solved
by converting to a BDD.

Often a very small part of the entire fault tree is
dynamic in nature. Hence, independent subtrees are identified
in the modular approach and the decision to use a Markov
solution or BDD solution is made for the subtree instead of for
the fault tree as a whole. These independent subtrees are treated
separately and their solutions are integrated to get the solution
for the entire fault tree. In other words, several Markov models
and BDDs are used for the solution of a fault tree instead of one

0-7803-3783-2/97/$5.00 0 1997 IEEE
1997 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium 57

Markov model or one BDD. The advantage of using several
Markov models and BDDs is that each will be substantially
smaller in size than the single Markov model or BDD. It is easy
to handle three independent Markov models with lo00 states
each compared to one Markov model with IO9 states.

The paper is organized as follows. The next section
provides a brief overview of the DIFtree methodology. Then
the modular approach is introduced and explained using an
example fault tree in section 3. In sections 4, 5 and 6 the
algorithms used for modularization and synthesis of results are
discussed. The way coverage modeling is incorporated in the
modular approach is discussed in section 7. Finally the
modular approach is applied to the fault tree of a real life
system (ASID-MAS), to demonstrate the potential of this
research.

2 DIFtree METHODOLOGY

of the Fault Tree

Figure 1 provides an overview of the DIFtree
methodology. The system level fault tree can be described
either graphically or textually. The Graphical user interface
(GUI) can automatically generate the textual format and can
automatically display a fault tree from the textual format. In
other words, the GUI provides the ability to switch between the
textual format and the graphical display. The textual input
language relies on the use of keywords to linearly describe the
fault tree connections. Once the fault tree is described it can be
solved using the modular approach, explained in the next
section.

Input Parameters

Coverage, Replication

I Truncation (if any)

c I 5 z l c 2 ? z l System Unreliability Unreliabilit Plot

Figure 1 DIFtree Methodology

3 MODULAR APPROACH

In the modular approach (shaded part in Figure 1) the
fault tree is divided into independent subtrees, and different
solution techniques are applied to each subtree depending on
the latter's characteristics. Independent subtrees (subtrees that
share no inputs) are found using a very efficient linear time
algorithm [13]. The subtrees are further identified as static or
dynamic. If the subtree is static in nature, then the BDD solution
is used. If the subtree is dynamic in nature, then the Makov
chain solution is used. Modularization is a recursive process as
subtrees might themselves contain independent subtrees. The
solutions of various independent subtrees are integrated using a
relatively straightforward and recursive algorithm.

As an example, modular approach is applied to the
fault tree in Figure 2. There are two independent static subtrees
nested in a larger static subtree and one dynamic subtree.
Markov model for the dynamic subtree and the BDD model for
one of the static subtree is shown in the figure. Modularization
techniques are not applied to the solution of a dynamic subtree
whose toplevel node is a dynamic gate because it does not
provide an exact solution. Thus, independent subtrees are not
identified for the dynamic subtree in Figure 2 because the
toplevel node is a Priority-AND gate [141.

Figure 2 An Example of Modular Approach [13]

The basic idea in integrating the results obtained from
the separate solution of the independent subtrees is to traverse
the fault tree, depth-first-left-most starting at the toplevel node.
Then determine for each gate node, if there are any independent
subtrees below it. If there are, then traversal continues to the
inputs of the node. If there are no independent subtrees below
the gate node and if the gate node is independent (is the topnode
of an independent subtree), it is solved using the appropriate
solution technique depending on the type of the subtree it
represents. It is then replaced in the parent node as a basic event
with the probability of failure equal to that obtained from the

58 1997 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

solution of the subtree. This is equivalent to replacing the entire
subtree in the fault tree by a basic event. The traversal then
returns to the parent node and continues from there.

Once all the independent subtrees below a gate node
have been solved and replaced by a basic event, the gate node
is checked for independence. If it is independent, it is solved
using the technique depending on the type of subtree it
represents. It is then replaced as a basic event in its parent node.
Hence, recursively the solutions of various independent
subtrees are integrated to get the failure probability of the
toplevel node.

For a static subtree, the probability of occurrence of
the l.op event of the subtree is the probability of the basic event
replacing the subtree. On the other hand, for the dynamic
subtree, the probability of reaching the failure state of the
resulting Markov chain is the probability of the basic event
which replaces the subtree.

4 IDENTIFICATION OF MODULES

The most important thing in modularization is to find
an efficient way of identifying independent subtrees (modules).
A number of methods [3][6][15][16][18][19][20][22] have
been proposed to detect modules or independent subtrees in a
fault tree. Chatterjee [6] and Birnbaum et a1 [3] first developed
the properties of modules and demonstrated their use in fault
tree analysis. Locks [16] expanded the concept to non-coherent
fault trees and showed its effectiveness in obtaining cutsets.
Rosenthal [18] obtained modules in a fault tree by using an
algorithm for finding cut vertices from a fault tree. Wilson [20]
obtained modules from the boolean indicator expression of a
fault tree.

However, the most efficient and simple algorithm, to
date, has been proposed by Rauzy and Dutuit [13]. It detects
modules in a fault tree (coherent or not) with several hundred
gates and basic events within a few milliseconds. Moreover, its
simplicity makes it easier to implement. Hence, the modular
approach uses Rauzy’s linear time algorithm to detect
independent subtrees.

The basic principle of the algorithm can be stated as
follows: Let v be an internal event and tl and t2 respectively the
first and second dates of visits of v in a depth first left most
traversal of the fault tree. Then v is a module I . . none of its
descendents is visited before tl and after t2 during the traversal
[131.

s 5 ALGORITHM FOR MODULARIZATION

Figure 3 shows the algorithm used for modularization
in 1lIFtree. It uses Rauzy’s algorithm for finding independent
subtrees. The fault tree is traversed twice. In the first depth-first
left-most traversal, the counters are set according to the
following rule: in the first visit to a node the First counter for
that node is set, and in the second visit the Second counter is set.
Further visits to the node increments the Last counter. If the

First counter to a node is set then its inputs are not visited.

In the second traversal, for each gate node all its inputs
are traversed. The minimum of thefirst dates (value in the first
counter) and maximum of the last dates of visits of all inputs
are collected. If any input is independent then the indep-below
flag of the gate node is set to TRUE. This flag indicates if there
are any independent subtrees below a gate node. If any input to
a gate is dynamic and is not independent, then the gate node is
also made dynamic.

Initialize the counters and variables;

Perform a depth first left most traversal of the tree
starting at toplevel to set the counters;
Perform a second depth first left most traversal of the
tree starting at toplevel node.
For each node x [

if (x.node-type = BASIC-EVENT)

else if (x.node-type =GATE) (
collect from all its inputs (

return;

min =minimum of the first dates;
max =maximum of the last dates;

if any input is independent

if any input is Dynamic and not independent
x.indep-below =YES;

x.tree-type = DYNAMIC;

I
Check for independence

if (x.node-type == DYNAMIC) [

x.indep-below = NO;
x.treetype = DYNAMIC;

(x is a module iff max < x.second && min > x.first)

1
else

x.tree-type = STATIC;
I

Figure 3 Algorithm for modularization in DZFtree

After traversing all the inputs of a gate node, thecate
node (say x) is checked to see if it is a module (or is the toplevel
of an independent subtree). It is a module i f s the collected
minimum and maximum are respectively greater than the first
date of x and less than the second date. The tree-type flag of
the gate node is set to the type of subtree it represents. If the
tree-type flag is dynamic then indep-below jlag is reset to
FALSE, indicating there are no independent subtrees below it.
This is done because modularization technique is not applied to
the solution of a subtree whose toplevel gate is dynamic.

Results of various independent subtrees are integrated
using the two flags, indep-below and tree-type. Next section
describes the integration algorithm.

6 ALGORITHM FOR SYNTHESIS OF RESULT

Figure 4 shows the algorithm used for synthesis of the
solution of various independent subtrees. The fault tree is again
traversed depth-first leftmost starting at the toplevel. If the

1997 PROCEEDINGS Annual RELlABlLlTY and MAINTAINABILITY Symposium 59

indep-belowflag of a gate node is TRUE, indicating that there
are nested independent subtrees below it, then the traversal
continues to the inputs of the node, so that the nested subtrees
are solved first. If the indepbelowflag is FALSE and the gate
node is independent, it is solved using the appropriate solver
depending on the type of subtree the gate node represents. Then
the type of the node is changed from gate-node to leaf-node,
the inputs of the node are cleared and the failure probability of
the node is set to the result obtained from the solver.

Perform a depth first left most traversal of the tree
itarting at the toplevel node.

:or each node x (

if (x, node-type == BASIC-EVENT)
retum;

else if (x.node-type == GATE) (

traverse the inputs;

retum;

if (x.indep-below ==YES)

if (x.independence ==NO)

if (xhdependence == YES) [

if (x.tree-type ==DYNAMIC)

else
failure-prob = dynamic-solver()

failure-prob = static-solver();

x.node-type = BASIC-EVENT;

x.inputs.clear();

x.prob = failure_prob;
)

)
I

Figure 4 Algorithm for Synthesis of Results

As an example consider the dynamic fault tree in
Figure 2. There are two independent static subtrees nested in a
larger static subtree and one dynamic subtree. To integrate the
results, the fault tree is traversed depth-first-leji most starting at
toplevel node A. The indep-belowflag of node A is TRUE
because there are independent subtrees below it. The traversal
continues to the inputs of node A and its leftmost input B is
checked next. The indep-belowflag of node B is also TRUE
because there are nested independent subtrees below it. The
traversal continues to the inputs of node B and its leftmost
input (node D) is checked first. It represents a static subtree and
its indep-below flag is FALSE (because there are no
independent subtree below it). Hence it is converted to a BDD
and solved using a BDD solver. It is then replaced in the parent
node (gate node B) as a basic event. The failure probability of
this basic events is set to that obtained from the solution of the
BDD. The traversal then returns to gate node B and its next
input (node E) is checked. It also represents a static subtree and
its indepbelowflag is also FALSE. Hence, it is converted to a
BDD and solved. It is then similarly replaced in the parent node
(gate node B) as a basic event. The traversal again returns to
gate node B. Both the inputs of gate B are now replaced by two

basic events. The probabilities of these two basic events are
obtained from the separate solutions of the two BDDs.

Node B (with both inputs replaced by basic events) is
checked next because all its input nodes have been processed. It
also represents an independent static subtree. Hence, It is
converted to a BDD, solved and replaced in its parent node
(node A) as a basic event. The failure probability of this basic
events is set to that obtained from the solution of the BDD. The
traversal returns to node A and its next input node C is checked.
It represents an independent dynamic subtree. Note that it has
two independent subtrees below it but modularization
techniques are not used for dynamic gates because it does not
provide an exact solution. Hence, the entire subtree is replaced
by a basic event. The probability of this basic event is obtained
by converting the subtree to a Markov model and solving the
resulting Markov chain. This reduces gate A to only two basic
events (node B and node C), a BDD solution of which gives the
probability of failure of the toplevel node.

fb
.

r - - - - - - 1

Figure 5 Example of integration of results of various

subtrees

If modular approach were not used in the analysis of
the dynamic fault tree in Figure 2, then the entire tree would
have to be converted to a Markov model [4][9]. Moreover,
BDD solution technique would not have been possible as the
tree is dynamic. Hence, modular approach is a very powerful
means of analyzing large and complex fault trees.

7 MODULARIZATIONAND COVERAGE

Fault coverage is the conditional probability c that the
system recovers from a fault given that a fault has occurred.
Including the concept of coverage (and the possibility that
recovery may be imperfect) in the system level model is critical
to an accurate reliability (and other dependability measures)
assessment [121. Coverage modeling can be automatically

60 1997 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

incorporated into both dynamic and static fault tree models.
Thus, coverage modeling is an integral part of the modular
approach. This section discusses the way coverage modeling is
incorporated in the modular approach.

(Obtained from the solutior
QA Q G ~ of the independent subtree

,‘Cc2
r - - - - - -

I
I I
I I 16 I 6:

Cc I Q = Unreliability of node i I ca
I -

Ci = Coverage value of I I
node i L _a& - - - - -QS 4

Figure 6 Example to illustrate coverage modeling

In the modular approach, independent subtrees are
solved separately and replaced in the fault tree by a basic event.
The probability of failure of the basic event replacing an
independent subtree, is obtained from the solution of the
subtree (BDD solution or Markov solution depending on the
type of subtree). In coverage modeling there are two kinds of
failures associated with each component: covered failure and
uncovered failure. Solution of the independent subtree provides
the total probability of failure associated with the subtree (that
is the sum of covered and uncovered failure). For coverage
modeling we need to obtain the fraction of the total failure of
the independent subtree that is covered (c) and that is uncovered
(s) for the basic event replacing the subtree.This is because the
covered failure may or may not lead to system failure
depending on the remaining redundancy of the system,
whereas, an uncovered failure is considered as the single point
of failure for the basic event. Hence, the c and s value can have
significant impact on reliability calculations.

I Unreliability

out calculating the c and s value
for the subtree.

Table 1 Results to show the impact of coverage on modularization

For example consider the fault tree in Figure 3.7. The
independent subtree, with toplevel gate G2, is replaced in the
fault tree by a basic event. The probability of failure and the
coverage value for the basic event is obtained from the solution

of the subtree. If we do not calculate the c and s value for the
independent subtree, then the solution of the fault tree with the
independent subtree replaced by a basic event will treat the
failure of the basic event (G2) to be fully covered (that is no
single point of failure). This will have a very significant impact
on the system reliability calculations of the fault tree. Table 1
shows the solution of the fault tree in Figure 6 with
modularization (and without the calculation of c and s value for
the independent subtree) and without modularization. The
unreliability for the fault tree (or the probability of failure of
node G1) with modularization (and without the calculation of c
and s value for the subtree G2) is significantly underestimated,
because the solution assumed that the basic event G2 had
perfect coverage (c = 1). Thus, it is important to calculate the c
and s value for the independent subtree, and provide it to the
basic event that replaces it in the fault tree.

P (covered failure of subtree)
C = (1)

P (uncovered failure of subtree) + P (covered failure of subtree)

Equation 1 is used to calculate the c value for the
independent subtree and equation 2 is used to calculate the s
value for the subtree.

P (uncovcrcd failure of subtree)

(2)
S =
P (uncovered failure of subtree) + P (covered failure of subtree)

8 ASID-MAS EXAMPLE SYSTEM

Figure 7 ASID-MAS system architecture[ll]

1997 PROCEEDINGS Annual RELIABILITY and MAlNTAINABlLlTY Symposium

The ASID (Advanced System Integration
Demonstration) [2] project was the first large scale effort in the
development of the PAVE PILLAR architecture for advanced
tactical fighters. In this section we analyze the reliability of the
critical functions of the mission avionics subsystem (MAS) of
the ASID system. There are several critical functions within
the mission avionics system. The loss of any one of these
functions causes the system to fail. The critical functions
include the vehicle management system (VMS), the crew
station control and display functions, mission and systems
management, local path generation, and scene and obstacle
following functions.

C

D

E

F

G

ASID-MAS

r - - 1

1.56191e-11

9.99900e-09

1.61612e-11

1.56 19 1 e- 1 1

5.42 133e- 13

1.21671e-08

I - - - - m$ I
/ - - - - - - - 7

r - J

I

I

Figure 8 Fault Tree for the ASID-MAS system

Figure 8 shows the fault tree for the ASID-MAS
system architecture shown in Figure 7. One processing unit is
required for the crew station functions, local path generation,
and mission and system management. Each of these processing
units is supplied with a hot spare backup to take over control
should the primary processor detect an error. For example,
mission and system management has Pl as the primary unit and

P2 as the hot spare unit. The scene and obstacle and VMS
subsystems both require more functionality than one processing
unit can provide, and thus each use two processing units. The
scene and obstacle processing units are also replicated,
providing a hot spare backup (Ps and Plo). The VMS system is
triplicated, providing two hot spare backups.

In addition to the hot spare backups, 2 additional pools
of spares are provided, each containing two spare processing
units (Sl and S2). Sl can be used to cover the first two processor
failures in the subsystems other than the VMS. S2 covers the
failure in the V M S subsystem. The subsystems are connected
via 2 triplicated bus systems, the first being the data bus (B1)
and the second being the mission management bus (B2). The
VMS has an additional triplicated bus, the vehicle management
bus 033).

The system fails if any one of the functions cannot be
performed, or if both of the two memories fail, or if all three of
any one type of bus fails. The following failure rates were used
in the solution of the fault tree: processors (2.5 x IO-'(); buses
(2.5 x and memories (1.0 x Fault detection was
assumed to be perfect.

The fault tree for the ASID-MAS system was solved

1 1.56191e-11 1 I f3

Table 2 Results of the ASID-MAS system

using the modular approach (results are shown in table 2). Use
of modularization resulted in the identification of 7 independent
subtrees (labeled A through G, where F and G are nested within
E). The independent subtrees were solved separately and the
results were integrated to obtain the result for the whole ASID-
MAS fault tree. If modular approach was not used for the
solution of the fault tree, then the entire tree had to be converted
to a Markov model for solution (because of dynamic gates).
Markov model for the entire tree would have been too big for
any existing commercial tool to be able to solve it (without
generating a truncated markov model). Thus modular approach
is a very efficient means for solving large and complex fault
trees.

62 1997 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

The modular approach, presented in this paper, is
useful for solving real world problems many of which manifest
themselves in large and complex fault trees. The solution of
such large and complex fault trees is a tedious process. There is
no known commercially available fault tree package that can
provide an exact solution for such systems. Other tools either
provide an approximate solution or can solve only small fault
trees.

This research was supported by NASA Langley
Research Center under grant number NCC- 1-2 10 and Quality
Research Associates under grant number QRA-DMI-9460027.
Their support is gratefully acknowledged. We plan to
incorporate DIFtree as part of the shade tree methodology[l7].

REFERENCES
ARALIA Grou “Computation of Prime Im licants of a Fault Tree
Within ARALfb,” Proceedings of the E&EL 1995 Conference,
Bournemouth, England, 1995
S.W. Benhen, W.A. Whitehouse, R. J. Farrell, F. M. Leah , and L. E.
Moen,, “Advanced s stem inte ration demonstration (AAD) system
definition,” Techmcdreport, AFkright Aeronautical Laboratones, 1984
2. W. Birnbaum and J. P. Esary, “Modules of coherent Binary Systems,”
SIAM Journal of Applied Mathematics, 1965, pp 442-462
Mark A. Bo d “D namic Fault Tree Models: Techni ues for Analysis of
Advanced $ a h $olerant ,Computer Spems,, ?h.D. Dissertation,
Department of Computer Science, Duke
Randal E. BTyant, “Graph-based AI orithms for Boolean Function
Mani ulation,’ IEEE Transactions on fomputers, c-35(8), August 1986,
pp 6 6 - 6 9 1
P. Chatterjee, “Modularization of Fault Trees: A Method to Reduce Cost
of Analysis,” Reliabilityand Fault Tree Analysis, SIAM, 1975, pp101-137
Oliver Coudert and Jean Christophe Madre, “Fault Tree An4ysis: IOzo
Prime Implicants and Beyond,” Proceedings o the Annual Reliability and

Stac A. Doyle and J. B. Du an, “Analyzing Fault Tolerance using
DRdDD,” In Proceedings o$ the 10th Computing in Aerospace
Conference, March 1995

niversity, 1991

Maintainability Symposium, 1993, pp 240-24 5

[21] H. A. Watson and Bell Telephone,Laboratories, “Launch Control Safety
Study,” Bell Telephone Laboratones, Murray Hill, NJ USA, 1961

[22] J. Yllera “Modularization methods for evaluating fault trees of complex
s stems,” Engineering Risk and Hazard Assessment, vol. 2, chapter 5 ,
8 R C

BIOGRAPHIES
Rohit Gulati
Alta Group of Cadence Design Systems
555, N. Mathilda Avenue
Sunnyvale, CA 94086
rgulati@altagroup.com

Rohit Gulati was awarded the B. E. degree in Electronics and Communi-
cation Engineering from Birla Institute of Technology, India in 1993 and the
MS degree in Electrical Engineering from the University of Virginia in 1996.
Rohit is currently working in the R&D wing of the Alta Group of Cadence
Design Systems. His research interests include reliability and software engi-
neering. He is a member of the IEEE computer and reliability societies and the
Eta Kappa Nu.

Joanne Bechta Dugan
Dept. of Electrical Engineering
Thornton Hall
University of Virginia
Charlottesville. VA 22903
jbd@virginia.edu

Joanne Bechta Dugan was awarded the B.A. degree in Mathematics and
Computer Science from La Salle University, Philadelphia, PA in 1980, and the
M.S. and Ph.D. degrees in Electrical Engineering from Duke University,
Durham, NC in 1982 and 1984, respectively. Dr. Dugan is currently Associate
Professor of Electrical Engineering at the University of Virginia, and was pre-
viously Associate Professor of Computer Science at Duke University and Vis-
iting Scientist at the Research Triangle Institute. She has performed and
directed research on the development and application of techniques for the
analysis of computer systems which are designed to tolerate hardware and
software faults. Her research interests thus include hardware and software reli-

J. B. Du an K. S. Trivedi, M. K. Sometherman and R. M. Geist, “The
Hybrid WutAmated Reliabilit Predictor,” AIAA Journal of Guidance,
Control and Dynamics, 9(3), June 1991, pp 554-563

[IO] J. B. Du an, B. Venkataraman, Rohit Gulati, “DIFtree: A software
packaye &the analysis of dynamic fault tree models,” In Proceedings of Senior member of the IEEE* and a member of Eta
the Re rability and Maintainability Symposium, January, 1997

ability engineering, fault tolerant computing, and mathematical modeling
using dynamic fault trees, Markov models, Petri and simulation, Dr,
Dugan is an Associate Editor of the IEEE Transactions on Reliability, is a

N u and Phi Beta
Kappa. She is serving on the National Research Council Committee on Appli-

[I I] J. B. Du an, Salvatore J. Bavuso and Mark A. B?yd, “D namic Fault Tree
models for Fault Tolerant Com uter Systems, IEEE!Transactions on
Reliability, Volume 41, Number!, September 1992, pp 363-377

cation of Digital Instrumentation and Control Systems to Nuclear Power Piant
Operations and Safety.

[I21 J. B. Du an and Kishore S. Trivedi, “Covera e Modeling for
Dependabikt Anal sis of Fault Tolerant Systems,” IEEE transactions on
Computers, &6), h89 , pp 775-787.

[I31 Yves Dutuit and Anto$ Rauzy “A linear time Algorithm to find
Modules of Fault Trees, IEEE Transactions on Reliability, 1996 (to
appear)

[141 J. B. Fussel, E.F. Aber and R.G. Rahl, “On the Quantitative Anal sis of
Priority-AND Failure lo ic,” IEEE Transactions on Reliability, 301. R-
25, No. 5, December 19%, pp 324-326

[151 T. Kohda, E. J. Henley and K. Inoue “Finding Modules in Fault Trees,”
IEEE Transactions on Reliability, volume 38, June 1989, pp165-176

[161 M. 0. Locks “Modularizing, minimizing and inter reting the K & H fault
tree,” IEEE Transactions on Reliability, Val 40, 1681 Dec, pp41 1-415

[171 Laura L. Pullum and J. B. Dugan, “Fault Tree Models for the Anal sis of
Complex Compter Based, sJystems,” Proceedings of the h n u a l
Reliability and aintainability ymposium, 1996, pp 200-207

[181 A. Rosenthal, “Decomposition methods for Fault Tree Analysis,’’ IEEE
Trunsactions on Reliability, vol43, 1980 Jun, pp136-138

[I91 K. D. Russell and M. Rasmuson Dale, ‘‘Fault Tree Rzduction and
uantification - an Overview of IRRAS AI onthm, Reliability

Zngineerinl and System Safety, 40, 1993, pp 149- I&
[20] J. M. Wilson “Modularizing and Minimizin Fault Trees,’’ IEEE

Transactions on Reliability, R-34, 1985 Oct, pp $20-322

199’7 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium 63

mailto:rgulati@altagroup.com
mailto:jbd@virginia.edu

