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SUMMARY AND CONCLUSIONS 

Three commonly used analytical techniques for 
reliability evaluation are fault trees, Binary decision diagrams 
and Markov chains. Each of these techniques have advantages 
and disadvantages and the choice depends on the system being 
modeled. Fault trees have been found to be the most popular 
choice in terms of building an analytical model of a system. It 
provides a compact representation of the system and is easily 
understood by humans. However, fault trees lack the modeling 
power and its solution time increases exponentially with the 
size of the system being modeled. 

In this paper, we present a new exciting hybrid 
approach, called the modular approach, for the efficient 
analysis of both static and dynamic fault trees. It provides a 
combination of BDD solution for static fault trees and Markov 
chain solution for dynamic fault trees coupled with the 
detection of independent subtrees. The algorithms used for 
modularization, integrating the results obtained from the 
separate solution of the independent modules (subtrees) and 
incorporating coverage modeling are discussed in detail in this 
paper. The modular approach is applied to an example systems 
to demonstrate the potential of this research 

1 INTRODUCTION 

Fault Trees have been widely used for reliability 
analysis for about forty years. They were first developed in the 
1960s to facilitate analysis of the Minuteman missile system 
[21], and have been supported by a rich body of research since 
their inception. It provides a compact representation of the 
system and can be easily specified by humans. However, the 
analysis of large fault trees is a tedious process even though 
considerable progress has been made in this field. Bryant's 
Binary Decision Diagram (BDD) [5] provides a faster and 
more efficient means for analyzing such large fault trees. But 
the use of BDD is limited to the analysis of static fault trees 
only. Dynamic fault trees, which are used for modeling 
sequence dependencies, can only be solved using Markov 
solutions methods. The disadvantage of Markov models and 
BDDs, is that its direct specification is an awkward, time 

consuming and an error prone task. 

Most of the tools developed thus far, for reliability 
analysis are based on fault trees which are solved by converting 
to either its equivalent BDD [1][7][8] or to Markov model [9]. 
Tools that convert fault trees to BDD for solution can not be 
used to model sequence dependencies and hence, can not 
provide dynamic fault tree solutions. But, they can solve large 
fault trees in little time because there is no relation between the 
number of components of a system and the size of the BDD 
that represents it. It is not uncommon to find large fault trees. 
For example the fault tree for the newly designed space station 
contains approximately 1600 basic events [ 171. 

Tools that allow dynamic fault tree analysis by 
converting the fault tree to a Markov chain can not solve large 
fault trees because the size of the resulting Markov model 
increases exponentially and so does the solution time. 
Moreover, such tools convert the entire fault tree to a Markov 
model irrespective of the fact whether the fault tree has any 
dynamic gates. A dynamic fault tree can have static and 
dynamic gates, hence, conversion of a fault tree containing 
only static gates to a Markov model can be very inefficient. 

A more efficient and powerful means for fault tree 
analysis can be provided by the use of both BDD and Markov 
solution methods in tandem. DIFtree, a fault tree analysis tool 
developed at the University of Virginia [lo], uses a modular 
approach which provides a BDD solution for static fault trees 
and Markov chain solution for dynamic fault trees. A fault tree 
is converted to a Markov chain only if it has one or more 
dynamic gates. If the fault tree has only static gates it is solved 
by converting to a BDD. 

Often a very small part of the entire fault tree is 
dynamic in nature. Hence, independent subtrees are identified 
in the modular approach and the decision to use a Markov 
solution or BDD solution is made for the subtree instead of for 
the fault tree as a whole. These independent subtrees are treated 
separately and their solutions are integrated to get the solution 
for the entire fault tree. In other words, several Markov models 
and BDDs are used for the solution of a fault tree instead of one 
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Markov model or one BDD. The advantage of using several 
Markov models and BDDs is that each will be substantially 
smaller in size than the single Markov model or BDD. It is easy 
to handle three independent Markov models with lo00 states 
each compared to one Markov model with IO9 states. 

The paper is organized as follows. The next section 
provides a brief overview of the DIFtree methodology. Then 
the modular approach is introduced and explained using an 
example fault tree in section 3. In sections 4, 5 and 6 the 
algorithms used for modularization and synthesis of results are 
discussed. The way coverage modeling is incorporated in the 
modular approach is discussed in section 7. Finally the 
modular approach is applied to the fault tree of a real life 
system (ASID-MAS), to demonstrate the potential of this 
research. 

2 DIFtree METHODOLOGY 

of the Fault Tree 

Figure 1 provides an overview of the DIFtree 
methodology. The system level fault tree can be described 
either graphically or textually. The Graphical user interface 
(GUI) can automatically generate the textual format and can 
automatically display a fault tree from the textual format. In 
other words, the GUI provides the ability to switch between the 
textual format and the graphical display. The textual input 
language relies on the use of keywords to linearly describe the 
fault tree connections. Once the fault tree is described it can be 
solved using the modular approach, explained in the next 
section. 

Input Parameters 

Coverage, Replication 

I Truncation (if any) 

c I 5 z l c 2 ? z l  System Unreliability Unreliabilit Plot 

Figure 1 DIFtree Methodology 

3 MODULAR APPROACH 

In the modular approach (shaded part in Figure 1) the 
fault tree is divided into independent subtrees, and different 
solution techniques are applied to each subtree depending on 
the latter's characteristics. Independent subtrees (subtrees that 
share no inputs) are found using a very efficient linear time 
algorithm [13]. The subtrees are further identified as static or 
dynamic. If the subtree is static in nature, then the BDD solution 
is used. If the subtree is dynamic in nature, then the Makov 
chain solution is used. Modularization is a recursive process as 
subtrees might themselves contain independent subtrees. The 
solutions of various independent subtrees are integrated using a 
relatively straightforward and recursive algorithm. 

As an example, modular approach is applied to the 
fault tree in Figure 2. There are two independent static subtrees 
nested in a larger static subtree and one dynamic subtree. 
Markov model for the dynamic subtree and the BDD model for 
one of the static subtree is shown in the figure. Modularization 
techniques are not applied to the solution of a dynamic subtree 
whose toplevel node is a dynamic gate because it does not 
provide an exact solution. Thus, independent subtrees are not 
identified for the dynamic subtree in Figure 2 because the 
toplevel node is a Priority-AND gate [ 141. 

Figure 2 An Example of Modular Approach [13] 

The basic idea in integrating the results obtained from 
the separate solution of the independent subtrees is to traverse 
the fault tree, depth-first-left-most starting at the toplevel node. 
Then determine for each gate node, if there are any independent 
subtrees below it. If there are, then traversal continues to the 
inputs of the node. If there are no independent subtrees below 
the gate node and if the gate node is independent (is the topnode 
of an independent subtree), it is solved using the appropriate 
solution technique depending on the type of the subtree it 
represents. It is then replaced in the parent node as a basic event 
with the probability of failure equal to that obtained from the 
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solution of the subtree. This is equivalent to replacing the entire 
subtree in the fault tree by a basic event. The traversal then 
returns to the parent node and continues from there. 

Once all the independent subtrees below a gate node 
have been solved and replaced by a basic event, the gate node 
is checked for independence. If it is independent, it is solved 
using the technique depending on the type of subtree it 
represents. It is then replaced as a basic event in its parent node. 
Hence, recursively the solutions of various independent 
subtrees are integrated to get the failure probability of the 
toplevel node. 

For a static subtree, the probability of occurrence of 
the l.op event of the subtree is the probability of the basic event 
replacing the subtree. On the other hand, for the dynamic 
subtree, the probability of reaching the failure state of the 
resulting Markov chain is the probability of the basic event 
which replaces the subtree. 

4 IDENTIFICATION OF MODULES 

The most important thing in modularization is to find 
an efficient way of identifying independent subtrees (modules). 
A number of methods [3][6][15][16][18][19][20][22] have 
been proposed to detect modules or independent subtrees in a 
fault tree. Chatterjee [6] and Birnbaum et a1 [3] first developed 
the properties of modules and demonstrated their use in fault 
tree analysis. Locks [16] expanded the concept to non-coherent 
fault trees and showed its effectiveness in obtaining cutsets. 
Rosenthal [18] obtained modules in a fault tree by using an 
algorithm for finding cut vertices from a fault tree. Wilson [20] 
obtained modules from the boolean indicator expression of a 
fault tree. 

However, the most efficient and simple algorithm, to 
date, has been proposed by Rauzy and Dutuit [13]. It detects 
modules in a fault tree (coherent or not) with several hundred 
gates and basic events within a few milliseconds. Moreover, its 
simplicity makes it easier to implement. Hence, the modular 
approach uses Rauzy’s linear time algorithm to detect 
independent subtrees. 

The basic principle of the algorithm can be stated as 
follows: Let v be an internal event and tl and t2 respectively the 
first and second dates of visits of v in a depth first left most 
traversal of the fault tree. Then v is a module I . .  none of its 
descendents is visited before tl and after t2 during the traversal 
[131. 

s 5 ALGORITHM FOR MODULARIZATION 

Figure 3 shows the algorithm used for modularization 
in 1lIFtree. It uses Rauzy’s algorithm for finding independent 
subtrees. The fault tree is traversed twice. In the first depth-first 
left-most traversal, the counters are set according to the 
following rule: in the first visit to a node the First counter for 
that node is set, and in the second visit the Second counter is set. 
Further visits to the node increments the Last counter. If the 

First counter to a node is set then its inputs are not visited. 

In the second traversal, for each gate node all its inputs 
are traversed. The minimum of thefirst dates (value in the first 
counter) and maximum of the last dates of  visits of all inputs 
are collected. If any input is independent then the indep-below 
flag of the gate node is set to TRUE. This flag indicates if there 
are any independent subtrees below a gate node. If any input to 
a gate is dynamic and is not independent, then the gate node is 
also made dynamic. 

Initialize the counters and variables; 

Perform a depth first left most traversal of the tree 
starting at toplevel to set the counters; 
Perform a second depth first left most traversal of the 
tree starting at toplevel node. 
For each node x [ 

if (x.node-type = BASIC-EVENT) 

else if (x.node-type =GATE) ( 
collect from all its inputs ( 

return; 

min =minimum of the first dates; 
max =maximum of the last dates; 

if any input is independent 

if any input is Dynamic and not independent 
x.indep-below =YES; 

x.tree-type = DYNAMIC; 

I 
Check for independence 

if (x.node-type == DYNAMIC) [ 

x.indep-below = NO; 
x.treetype = DYNAMIC; 

(x is a module iff max < x.second && min > x.first) 

1 
else 

x.tree-type = STATIC; 
I 

Figure 3 Algorithm for modularization in DZFtree 

After traversing all the inputs of a gate node, thecate 
node (say x )  is checked to see if it is a module (or is the toplevel 
of an independent subtree). It is a module i f s  the collected 
minimum and maximum are respectively greater than the first 
date of x and less than the second date. The tree-type flag of 
the gate node is set to the type of subtree it represents. If the 
tree-type flag is dynamic then indep-below jlag is reset to 
FALSE, indicating there are no independent subtrees below it. 
This is done because modularization technique is not applied to 
the solution of a subtree whose toplevel gate is dynamic. 

Results of various independent subtrees are integrated 
using the two flags, indep-below and tree-type. Next section 
describes the integration algorithm. 

6 ALGORITHM FOR SYNTHESIS OF RESULT 

Figure 4 shows the algorithm used for synthesis of the 
solution of various independent subtrees. The fault tree is again 
traversed depth-first leftmost starting at the toplevel. If the 
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indep-belowflag of a gate node is TRUE, indicating that there 
are nested independent subtrees below it, then the traversal 
continues to the inputs of the node, so that the nested subtrees 
are solved first. If the indepbelowflag is FALSE and the gate 
node is independent, it is solved using the appropriate solver 
depending on the type of subtree the gate node represents. Then 
the type of the node is changed from gate-node to leaf-node, 
the inputs of the node are cleared and the failure probability of 
the node is set to the result obtained from the solver. 

Perform a depth first left most traversal of the tree 
itarting at the toplevel node. 

:or each node x ( 

if (x, node-type == BASIC-EVENT) 
retum; 

else if (x.node-type == GATE) ( 

traverse the inputs; 

retum; 

if (x.indep-below ==YES) 

if (x.independence ==NO) 

if (xhdependence == YES) [ 

if (x.tree-type ==DYNAMIC) 

else 
failure-prob = dynamic-solver() 

failure-prob = static-solver(); 

x.node-type = BASIC-EVENT; 

x.inputs.clear(); 

x.prob = failure_prob; 
) 

) 
I 

Figure 4 Algorithm for Synthesis of Results 

As an example consider the dynamic fault tree in 
Figure 2. There are two independent static subtrees nested in a 
larger static subtree and one dynamic subtree. To integrate the 
results, the fault tree is traversed depth-first-leji most starting at 
toplevel node A. The indep-belowflag of node A is TRUE 
because there are independent subtrees below it. The traversal 
continues to the inputs of node A and its leftmost input B is 
checked next. The indep-belowflag of node B is also TRUE 
because there are nested independent subtrees below it. The 
traversal continues to the inputs of node B and its leftmost 
input (node D) is checked first. It represents a static subtree and 
its indep-below flag is FALSE (because there are no 
independent subtree below it). Hence it is converted to a BDD 
and solved using a BDD solver. It is then replaced in the parent 
node (gate node B) as a basic event. The failure probability of 
this basic events is set to that obtained from the solution of the 
BDD. The traversal then returns to gate node B and its next 
input (node E) is checked. It also represents a static subtree and 
its indepbelowflag is also FALSE. Hence, it is converted to a 
BDD and solved. It is then similarly replaced in the parent node 
(gate node B) as a basic event. The traversal again returns to 
gate node B. Both the inputs of gate B are now replaced by two 

basic events. The probabilities of these two basic events are 
obtained from the separate solutions of the two BDDs. 

Node B (with both inputs replaced by basic events) is 
checked next because all its input nodes have been processed. It 
also represents an independent static subtree. Hence, It is 
converted to a BDD, solved and replaced in its parent node 
(node A) as a basic event. The failure probability of this basic 
events is set to that obtained from the solution of the BDD. The 
traversal returns to node A and its next input node C is checked. 
It represents an independent dynamic subtree. Note that it has 
two independent subtrees below it but modularization 
techniques are not used for dynamic gates because it does not 
provide an exact solution. Hence, the entire subtree is replaced 
by a basic event. The probability of this basic event is obtained 
by converting the subtree to a Markov model and solving the 
resulting Markov chain. This reduces gate A to only two basic 
events (node B and node C), a BDD solution of which gives the 
probability of failure of the toplevel node. 

fb 
. 

r - - - - - -  1 

Figure 5 Example of integration of results of various 

subtrees 

If modular approach were not used in the analysis of 
the dynamic fault tree in Figure 2, then the entire tree would 
have to be converted to a Markov model [4][9]. Moreover, 
BDD solution technique would not have been possible as the 
tree is dynamic. Hence, modular approach is a very powerful 
means of analyzing large and complex fault trees. 

7 MODULARIZATIONAND COVERAGE 

Fault coverage is the conditional probability c that the 
system recovers from a fault given that a fault has occurred. 
Including the concept of coverage (and the possibility that 
recovery may be imperfect) in the system level model is critical 
to an accurate reliability (and other dependability measures) 
assessment [ 121. Coverage modeling can be automatically 
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incorporated into both dynamic and static fault tree models. 
Thus, coverage modeling is an integral part of the modular 
approach. This section discusses the way coverage modeling is 
incorporated in the modular approach. 

(Obtained from the solutior 
QA Q G ~  of the independent subtree 

,‘Cc2 
r - - - - - -  

I 
I I 
I I 16 I 6: 

Cc I Q = Unreliability of node i I ca 
I - 

Ci = Coverage value of I I 
node i L _a& - - - - -QS 4 

Figure 6 Example to illustrate coverage modeling 

In the modular approach, independent subtrees are 
solved separately and replaced in the fault tree by a basic event. 
The probability of failure of the basic event replacing an 
independent subtree, is obtained from the solution of the 
subtree (BDD solution or Markov solution depending on the 
type of subtree). In coverage modeling there are two kinds of 
failures associated with each component: covered failure and 
uncovered failure. Solution of the independent subtree provides 
the total probability of failure associated with the subtree (that 
is the sum of covered and uncovered failure). For coverage 
modeling we need to obtain the fraction of the total failure of 
the independent subtree that is covered (c )  and that is uncovered 
(s) for the basic event replacing the subtree.This is because the 
covered failure may or may not lead to system failure 
depending on the remaining redundancy of the system, 
whereas, an uncovered failure is considered as the single point 
of failure for the basic event. Hence, the c and s value can have 
significant impact on reliability calculations. 

I Unreliability 

out calculating the c and s value 
for the subtree. 

Table 1 Results to show the impact of coverage on modularization 

For example consider the fault tree in Figure 3.7. The 
independent subtree, with toplevel gate G2, is replaced in the 
fault tree by a basic event. The probability of failure and the 
coverage value for the basic event is obtained from the solution 

of the subtree. If we do not calculate the c and s value for the 
independent subtree, then the solution of the fault tree with the 
independent subtree replaced by a basic event will treat the 
failure of the basic event (G2) to be fully covered (that is no 
single point of failure). This will have a very significant impact 
on the system reliability calculations of the fault tree. Table 1 
shows the solution of the fault tree in Figure 6 with 
modularization (and without the calculation of c and s value for 
the independent subtree) and without modularization. The 
unreliability for the fault tree (or the probability of failure of 
node G1) with modularization (and without the calculation of c 
and s value for the subtree G2) is significantly underestimated, 
because the solution assumed that the basic event G2 had 
perfect coverage ( c  = 1). Thus, it is important to calculate the c 
and s value for the independent subtree, and provide it to the 
basic event that replaces it in the fault tree. 

P (covered failure of subtree) 
C =  (1) 

P (uncovered failure of subtree) + P (covered failure of subtree) 

Equation 1 is used to calculate the c value for the 
independent subtree and equation 2 is used to calculate the s 
value for the subtree. 

P (uncovcrcd failure of subtree) 

(2) 
S =  
P (uncovered failure of subtree) + P (covered failure of subtree) 

8 ASID-MAS EXAMPLE SYSTEM 

Figure 7 ASID-MAS system architecture[ll] 
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The ASID (Advanced System Integration 
Demonstration) [2] project was the first large scale effort in the 
development of the PAVE PILLAR architecture for advanced 
tactical fighters. In this section we analyze the reliability of the 
critical functions of the mission avionics subsystem (MAS) of 
the ASID system. There are several critical functions within 
the mission avionics system. The loss of any one of these 
functions causes the system to fail. The critical functions 
include the vehicle management system (VMS), the crew 
station control and display functions, mission and systems 
management, local path generation, and scene and obstacle 
following functions. 

C 

D 

E 

F 

G 

ASID-MAS 

r - -  1 

1.56191e-11 

9.99900e-09 

1.61612e-11 

1.56 19 1 e- 1 1 

5.42 133e- 13 

1.21671e-08 

I - - - -  m$ I 
/ - - - - - - - 7  

r - J  

I 

I 

Figure 8 Fault Tree for the ASID-MAS system 

Figure 8 shows the fault tree for the ASID-MAS 
system architecture shown in Figure 7. One processing unit is 
required for the crew station functions, local path generation, 
and mission and system management. Each of these processing 
units is supplied with a hot spare backup to take over control 
should the primary processor detect an error. For example, 
mission and system management has Pl as the primary unit and 

P2 as the hot spare unit. The scene and obstacle and VMS 
subsystems both require more functionality than one processing 
unit can provide, and thus each use two processing units. The 
scene and obstacle processing units are also replicated, 
providing a hot spare backup (Ps and Plo). The VMS system is 
triplicated, providing two hot spare backups. 

In addition to the hot spare backups, 2 additional pools 
of spares are provided, each containing two spare processing 
units (Sl and S2). Sl can be used to cover the first two processor 
failures in the subsystems other than the VMS. S2 covers the 
failure in the V M S  subsystem. The subsystems are connected 
via 2 triplicated bus systems, the first being the data bus (B1) 
and the second being the mission management bus (B2). The 
VMS has an additional triplicated bus, the vehicle management 
bus 033). 

The system fails if any one of the functions cannot be 
performed, or if both of the two memories fail, or if all three of 
any one type of bus fails. The following failure rates were used 
in the solution of the fault tree: processors (2.5 x IO-'(); buses 
(2.5 x and memories (1.0 x Fault detection was 
assumed to be perfect. 

The fault tree for the ASID-MAS system was solved 

1 1.56191e-11 1 I f3  

Table 2 Results of the ASID-MAS system 

using the modular approach (results are shown in table 2). Use 
of modularization resulted in the identification of 7 independent 
subtrees (labeled A through G, where F and G are nested within 
E). The independent subtrees were solved separately and the 
results were integrated to obtain the result for the whole ASID- 
MAS fault tree. If modular approach was not used for the 
solution of the fault tree, then the entire tree had to be converted 
to a Markov model for solution (because of dynamic gates). 
Markov model for the entire tree would have been too big for 
any existing commercial tool to be able to solve it (without 
generating a truncated markov model). Thus modular approach 
is a very efficient means for solving large and complex fault 
trees. 
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The modular approach, presented in this paper, is 
useful for solving real world problems many of which manifest 
themselves in large and complex fault trees. The solution of 
such large and complex fault trees is a tedious process. There is 
no known commercially available fault tree package that can 
provide an exact solution for such systems. Other tools either 
provide an approximate solution or can solve only small fault 
trees. 

This research was supported by NASA Langley 
Research Center under grant number NCC- 1-2 10 and Quality 
Research Associates under grant number QRA-DMI-9460027. 
Their support is gratefully acknowledged. We plan to 
incorporate DIFtree as part of the shade tree methodology[l7]. 
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