ECE544: Fault-Tolerant Computing & Reliability Engineering (Fall 2022)

Homework #5 Solution (85 points)

Problem 1: a) 10 points b) 5 points, c) 5 points d) 15 points

(a) 1) = (62)

A B C D

(b) Available (Lt sets:
$$p_1 = \{A, B\}$$
) $p_2 = \{c, o\}$

(c) 2) Available (Lt sets: $q_1 = \{A, B\}$) $p_2 = \{c, o\}$

(b) Available (Lt sets: $q_1 = \{A, B\}$) $p_2 = \{c, o\}$

(c) $q_2 = \{a, c\}$ $q_3 = \{a, c\}$ $q_4 = \{a, o\}$

(d) 2) $q_4 = \{a, c\}$ $q_5 = \{a, c\}$ $q_6 = \{a$

Problem 2: a) 10 points b) 5 points, c) 5 points d) 15 points e) 15 points

- (b) Based on RBD model; the minimal path sets are:

 Pi= YA, B, EY P= YA, C, EY P3=YD, EY
- (C) Based = a FT model; the minimal cut sets are: $C_1 = \{E\}$ $C_2 = \{A, D\}$ $C_3 = \{B, C, D\}$ $\{D, B, C\}$
- d) Solution using the SDP method based on cutsets generated in part c) (Alternative methods: cutset using I/E, pathset using SDP, pathset using I/E)

e) Solution using the SDP method based on cutsets generated in part c) (Alternative methods: cutset using I/E, pathset using SDP, pathset using I/E)

(e)
$$Sim: \{\omega r \text{ to } \mathcal{O} \}$$

Usys = $Pr(c_1)' + Pr(c_1)' + Pr(c_1)' = c_2$
 $Pr(c_1)' = Pr(e_1)' + Pr(e_1)' = c_2$
 $Pr(c_1)' = Pr(e_1)' = |-e^{-\lambda t}| = |-e^{-\lambda t}|$