ECE454/544: Fault-Tolerant Computing \& Reliability Engineering (Fall 2022)

Homework \#6 Solution
(100 points)

1. (40 points) Consider the following fault tree model for a system with five components $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E. Gates G1 and G3 are OR gates; gates G2 and G4 are AND gates.
a. (20 points) Generate the binary decision diagram (BDD) for the fault tree using ordering $\mathrm{E}<\mathrm{D}<\mathrm{C}<\mathrm{B}<\mathrm{A}$.

b. (10 points) Assume the failure probability for each component is 0.1 . Find the system reliability at time $\mathrm{t}=10$ hours.

$$
\begin{aligned}
& p=0.9 \\
& q=0.1 \\
& R_{\mathrm{sys}} p_{E} p_{D}+p_{E} q_{D} p_{C} p_{A}+p_{E} q_{D} q_{C} p_{B} p_{A} \\
& =p^{2}+p^{3} q+p^{3} q^{2} \\
& =0.9^{2}+0.9^{3} 0.1+0.9^{3 *} 0.1^{2} \\
& =\mathbf{0 . 8 9 0 1 9}
\end{aligned}
$$

c. (10 points) Assume the failure rate for each component is $0.1 /$ hour. Find the system reliability at time $\mathrm{t}=10$ hours.

Each component's time to failure follows the exponential distribution. Thus, the component reliability and unreliability can be evaluated as (4 points):
$p=\exp (-0.1 * 10)=0.367879$
$q=1-p=0.632121$
(6 points) Using the same reliability expression as in b)
$R_{\mathrm{sys}}=p_{E} p_{D}+p_{E} q_{D} p_{C} p_{A}+p_{E} q_{D} q_{C} p_{B} p_{A}$
$=p^{2}+p^{3} q+p^{3} q^{2}$
$=0.367879^{2}+0.367879^{3} * 0.632121+0.367879^{3} * 0.632121^{2}$
$=0.1867$
2. (60 points) Consider the following system fault tree model. Assume the failure probability for each component is:

Component	A	B	C	D	E
Failure probability	0.2	0.2	0.1	0.3	0.3

a. (20 points) Find the system reliability at time $t=1000$ hours using the BDD method.
b. (25 points) Rank the importance of the five components using the Birnbaum's measure
c. (15 points) Find the importance value of component B using the diagnostic importance factor (DIF)

$$
\begin{aligned}
& \text { b) } u_{s y_{S}}=q_{A} q_{D}+q_{A} \cdot\left(1-q_{D}\right) \cdot q_{E}+\left(1-q_{A}\right) \cdot q_{B} \cdot q_{C} \cdot q_{D}+\left(1-q_{A}\right) \cdot q_{B} \cdot q_{C} \cdot\left(1-q_{D}\right) \cdot q_{E} \\
& =q_{A} q_{D}+q_{A} q_{E}-q_{A} q_{D} q_{E}+q_{B} q_{C} q_{D}-q_{A} q_{B} q_{C} q_{D}+q_{B} q_{C} q_{E}-q_{A} q_{B} q_{C} q_{E} \\
& -q_{B} q_{C} q_{D} q_{E}+q_{A} q_{B} q_{C} q_{D} q_{E} \\
& =1-\text { Rsys }=1-0.88984=0.11016 \\
& I^{B M}(A)=\frac{\partial S y_{S}}{\partial q_{A}}=q_{D}+q_{E}-q_{D} q_{E}-q_{B} q_{C} q_{D}-q_{B} q_{C} q_{E}+q_{B} q_{C} q_{D} q_{E} \\
& =0.3+0.3-0.3^{2}-0.2 \times 0.1 \times 0.3-0.2 \times 0.1 \times 0.3+02 \times 0.1 \times 0.3^{2} \\
& =0.6-0.09-0.012+0.0018=0.4998 \\
& I^{I M}(B)=\frac{\partial S y S}{\partial q_{B}}=q_{C} q_{D}-q_{A} q_{C} q_{D}+q_{C} q_{E}-q_{A} q_{C} q_{E}-q_{C} q_{D} q_{E}+q_{A} q_{C} q_{D} q_{E} \\
& =0.1 \times 0.3-0.2 \times 0.1 \times 0.3+0.1 \times 0.3-0.2 \times 0.1 \times 0.3-0.1 \times 0.3^{2}+0.2 \times 0.1 \times 0.3^{2} \\
& =0.06-0.012-0.009+0.0018=0.0408 \\
& I^{B M}(c)=\frac{\partial s_{j} s}{\partial q_{C}}=q_{B} q_{D}-q_{A} q_{B} q_{D}+q_{B} q_{E}-q_{A} q_{B} q_{E}-q_{B} q_{D} q_{E}+q_{A} q_{B} q_{D} q_{E} \\
& =0.2 \times 0.3-0.2^{2} \times 0.3+0.2 \times 0.3-0.2^{2} \times 0.3-0.2 \times 0.3^{2}+0.2^{2} \times 0.3^{2} \\
& =0.12-0.024-0.018+0.0036=0.0816 \\
& I^{B M}(D)=\frac{\partial q_{j}}{q_{D}}=q_{A}-q_{A} q_{E}+q_{B} q_{C}-q_{A} q_{B} q_{C}-q_{B} q_{C} q_{E}+q_{A} q_{B} q_{C} q_{E} \\
& =0.2-0.2 \times 0.3+0.2 \times 0.1-0.2^{2} \times 0.1-0.2 \times 0.1 \times 0.3+0.2^{2} \times 0.1 \times 0.3 \\
& =0.2-0.06+0.02-0.004-0.006+0.0012=0.1512 \\
& I^{B M}(E)=\frac{\partial S y s}{q_{E}}=q_{A}-q_{A} q_{D}+q_{B} q_{C}-q_{A} q_{B} q_{C}-q_{B} q_{C} q_{D}+q_{A} q_{B} q_{C} q_{D} \\
& =0.2-0.2 \times 0.3+0.2 \times 0.1-0.2^{2} \times 0.1-0.2 \times 0.1 \times 0.3+0.2^{2} \times 0.1 \times 0.3 \\
& =0.2-0.06+0.02-0.004-0.006+0.0012=0.1512
\end{aligned}
$$

Using Birnbaum's measure: $A>D=E>C>B$
c)

$$
\begin{aligned}
& I^{\text {DIF }}(B)=\operatorname{Pr}\{B \mid S\}=\frac{\operatorname{Pr}\{B \cap S\}}{\operatorname{Pr}\{S\}} \\
& S=(A+B C) \cdot(D+E) \quad B \cap S=B(A+B C) \cdot(D+E)=(A B+B C) \cdot(D+E) \\
& \operatorname{Pr}\{A B+B C\}=\operatorname{Pr}\{A B\}+\operatorname{Pr}\{B C\}-\operatorname{Pr}\{A B C\}=q_{A} q_{B}+q_{B} q_{C}-q_{A} q_{B} q_{C} \\
& =0.2^{2}+0.2 \times 0.1-0.2^{2} \times 0.1=0.04+0.02-0.004=0.056 \\
& \operatorname{Pr}\{D+E\}=\operatorname{Pr}\{D\}+\operatorname{Pr}\{E\}-\operatorname{Pr}\{D E\}=q_{D}+q_{E}-q_{D} q_{E} \\
& =0.3+0.3-0.3^{2}=0.6-0.09=0.51 \\
& \operatorname{Pr}\{B \cap S\}=\operatorname{Pr}\{A B+B C\} \cdot \operatorname{Pr}\{D+E\}=0.056 \times 0.51=0.02856 \\
& I^{D I F}(B)=\frac{\operatorname{Pr}\{B \cap S\}}{\operatorname{Pr}\{S\}}=\frac{0.02856}{U s y S}=\frac{0.02856}{0.11016} \approx 0.2593
\end{aligned}
$$

